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QCD

We know some basic features of QCD
The Lagrangian
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QCD

We know some basic features of QCD
The Lagrangian
The running of the coupling in the perturbative regime
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We know some basic features of QCD
The Lagrangian
The running of the coupling in the perturbative regime
Color confinement is observed
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QCD

We know some basic features of QCD

The Lagrangian
The running of the coupling in the perturbative regime

Color confinement is observed
Lattice QCD predicts the hadronic spectrum rather well

But most of the emergent behaviors of QCD are not understood
The origin of confinement

The proton spin puzzle
Certain bound states are unexpectedly observed / not observed

Basic behaviors of de-confined QCD matter

“The strongest and least understood of the fundamental forces”

James Mulligan, Yale University



Outline

1. Introduction: The quark-gluon plasma
2. Overview: Using jets to study the quark-gluon plasma

3. Results: Inclusive jet measurements in Pb-Pb
collisions with ALICE at /syn = 3.02 TeV

James Mulligan, Yale University



High-Temperature QCD

At high T, hadrons melt into quarks and gluons
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High-Temperature QCD

At high T, hadrons melt into quarks and gluons
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High-Temperature QCD

At high T, hadrons melt into quarks and gluons
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High-Temperature QCD

At high T, hadrons melt into quarks and gluons
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High-Temperature QCD

At high T, hadrons melt into quarks and gluons
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Ultra-relativistic heavy-ion collisions

Relativistic Heavy-lon Collider
Brookhaven National Lab
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Compact Muon Solenoid

SNN = 2. 76 5. 02 TeV
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Ultra-relativistic heavy-ion collisions

Energy Stopping Hydrodynamic

Inltial state Hard Collisions Evolution

Heavy-ion collisions create maximal energy density, and
therefore allow us to create quark-gluon plasma experimentally

- The hottest matter
created (I ~ 500 MgV)

- The most dense matter
created (& ~ 1-10 &hadron)

James Mulligan, Yale University 13



Signatures of the quark-gluon plasma

A variety of experimental signatures confirm that
deconfined QCD matter is created in heavy-ion collisions
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high-pr hadrons
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The strongly-coupled quark-gluon plasma

Elliptic flow: Back-to-back azimuthal correlation of soft particles

“Almond shape” is produced by collision
overlap, and then hydrodynamically expands
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The strongly-coupled quark-gluon plasma

Elliptic flow: Back-to-back azimuthal correlation of soft particles

“Almond shape” is produced by collision
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The strongly-coupled quark-gluon plasma

Elliptic flow: Back-to-back azimuthal correlation of soft particles

“Almond shape” is produced by collision
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High-Temperature QCD

At high T, hadrons melt into quarks and gluons
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High-Temperature QCD

At high T, hadrons melt into quarks and gluons
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The coupling is
still quite strong
here!

How does this
strongly-coupled
fluid emerge?

Does deconfined
QCD have quasi-
particle structure?

How does
confinement emerge?
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Ultra-relativistic heavy-ion collisions

Time—>»

P 4 .-;; ;’g‘“
: o

Energy Stopping Hydrodynamic

Initial state i , i I
Hard Collisions Evolution Hadron Freezeout

Heavy-ion collisions provide a rich laboratory for physics

Hadronization and confinement
Relativistic fluid properties
The AdS/CFT correspondence
Chiral symmetry restoration

Unforeseen physics that we may learn in such a rich system

James Mulligan, Yale University 20



Jets in heavy-ion physics

A rare, high-Q2 scattering between two
partons can produce a parton with a

large transverse momentum, pt \

James Mulligan, Yale University
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Jets in heavy-ion physics

A rare, high-Q2 scattering between two
partons can produce a parton with a
large transverse momentum, pt

As they propagate, the high-pt
partons will fragment into a
shower of partons, mostly via
collinear gluon radiation
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Jets in heavy-ion physics

A rare, high-Q2 scattering between two
partons can produce a parton with a
large transverse momentum, pt

As they propagate, the high-pt
partons will fragment into a
shower of partons, mostly via
collinear gluon radiation

When sufficient splittings have occurred such that
the shower partons reach low enough energy, the
coupling becomes large and the partons hadronize
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Jets in heavy-ion physics

A rare, high-Q2 scattering between two
partons can produce a parton with a
large transverse momentum, pr

As they propagate, the high-pr \\

partons will fragment into a
shower of partons, mostly via
collinear gluon radiation

When sufficient splittings have occurred such that
the shower partons reach low enough energy, the
coupling becomes large and the partons hadronize

This collimated collection of final state particles, grouped according
to a chosen jet clustering algorithm, is referred to as a jet

James Mulligan, Yale University 24



Jets in heavy-ion physics

Jets are produced early in the heavy-ion
collision, and propagate through the QGP

Jet production is calculable in pQCD
Jets are sensitive to a wide range of scales

Jets allow a rich set of observables to be
constructed

Use jets to study the quark-gluon plasma
The past: Jet suppression as proof of the QGP

The goal: Learn about the structure of the hot QCD medium
by understanding how jets interact with it

James Mulligan, Yale University 25



Jets in heavy-ion physics

The basic idea is simple: Compare jet observables in heavy-
ion collisions to those in proton-proton collisions

Y.J. Lee, CMS

In practice:
- Which observables?

How to disentangle background?

How to address multi-stage and multi-scale evolution?

How to compare experiment to theory?

James Mulligan, Yale University
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What have we learned about jet modification”?

1. Jet yields are suppressed
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What have we learned about jet modification”?

1. Jet yields are suppressed
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Inclusive jet measurements
show that jets in central
Pb-Pb collisions lose on
average ~10-20% of their
energy, depending on PTet
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What have we learned about jet modification”?

2. Soft energy is distributed to large angles

Di-jets with large pt imbalance have an
excess of soft particles at large angle

The origin of this effect remains delbated
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What have we learned about jet modification”?

3. The fragmentation pattern of a jet impacts modification

A. Jets with wide-angle hard B. Gluon-like jets lose more
splittings lose more energy than energy than quark-like jets
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What have we learned about jet modification”?

4. Medium recoll is important to understand

AS a jet propagates through the medium, it induces
medium particles to flow in the direction of the jet

The jet mass in Pb-Pb for R = 0.4 measured by ALICE
may be highly sensitive to medium recoll

60 < Py ch jet < 80 GeV/c 80 < o ch jet <100 GeV/c 100 < Pt e jot <120 GeV/c

0.2F 0
- ALICE @ 0-10% Pb-Pb |sy, = 2.76 TeV JEWEL + PYTHIA 0-10% Pb-Pb
B mms PYTHIA Perugia 2011 Recoil on

= = : Q-PYTHIA Recoil off

o T B
M et (GEV/C?) M et (GEVIC?) M et (GEV/C?)
Phys. Lett. B776 (2018) 249-264
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Measuring jets in ALICE

ALICE reconstructs jets at mid-

rapid

ity (n < 0.7) in pp, p-Pb, Pb-Pb

collisi

ons at+/syny = 2.76 — 13 TeV

Charged particle jets (charged jets)

High-precision tracking down
to pT,traCk = 150 MeV/c

Jets (full jets)

Addition of particle information
from the EM calorimeter down
to pT,Cluster = 300 MeV/c

James Mulligan, Yale University

EMCal ¢ acceptance: 108°
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Measuring jets in ALICE (®

ALICE

Most ALICE jet measurements use charged particle jets

Today, | will focus on full jets (charged + neutral)
Full jets allow a direct comparison to theory

But significant experimental complication!
+ And reduced statistics due to limited coverage

James Mulligan, Yale University 33



Measuring jets in ALICE ®

ALICE

Most ALICE jet measurements use charged particle jets

Today, | will focus on full jets (charged + neutral)
Full jets allow a direct comparison to theory

But significant experimental complication!
+  And reduced statistics due to limited coverage

Inclusive jet measurement in pp, Pb-Pb at /sy = 95.02 TeV

1. Measure jet Raa for R=0.2-0.4
2. Measure Pb-Pb jet cross-section ratio

James Mulligan, Yale University 34



How well do we understand jet Raa”

ALICE

Can we distinguish jet energy ATLAS ot Ran measurement at

loss models using jet Raa”? 5.02 TeV/ from pr = 100-1000 GeV
All models have strong High precision!
quenching, decreasing & ¥ amas
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What about at low pt? =—» Strongest pr-dependence
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How well do we understand jet Faa”

ALICE

Can we distinguish the R-dependence of jet energy loss”

Do we recover induced gluon radiation and/or medium recoil?
(Less suppression as R increases)

Or do smaller R jets tend to be more collimated, and therefore less
quenched? (More suppression as R increases)
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-p Can we achieve sufficient experimental precision to distinguish
whether jet Raa increases or decreases with jet R?
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DO measurements show an R-dependence? ®

ALICE

ALICE charged jets
= ] ] ] JHEP 03 (2014) 013
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DO measurements show an R-dependence? ®

ALICE

ALICE charged jets
. e o , Phys. Rev. C 96 (2017) 015202
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- ATLAS Rcp

DO measurements show an R-dependence? ®

ALICE

Phys. Lett. B 719 (2013) 220-241
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ALICE charged jets
No significant modification
R=0.2/R=0.3

CMS jet Raa
No significant modification
R=0.2-0.4

ATLAS Rcp

Significant modification for
R=0.2-0.5

Jet shapes (ALICE, CMS)
show modification, hadron-
jet coincidence measurement
(ALICE) shows no significant
intra-jet broadening from
R=0.2-0.5, ...
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Analysis strategy

Four main pieces to the analysis:
Reconstruct the jet pt from tracks and EMCal clusters
Reject the combinatorial background
Correct the jet pr for detector and resolution effects
Correct for the jet reconstruction efficiency and kinematic
efficiency

Improvements relative to the 2.76 TeV ALICE analysis

Extend to R=0.4
- Allows examination of modification to jet shape

Refine analysis technique
- Better understanding of our tracking and calorimetry

- Utilization of embedding-lbased jet pTt correction

James Mulligan, Yale University 41



Analysis strategy — et reconstruction

First, we reconstruct charged tracks and EMCal clusters

A variety of calibrations and cuts are performed on these
objects: track fitting requirements, EMCal energy calibrations, ...

We then propagate reconstructed tracks to
the EMCal, and if they overlap geometrically
with a cluster, the track pr is subtracted
from the cluster pr

-inally, we reconstruct jets with the anti-kr
jet clustering algorithm with R = 0.2, 0.4

plle‘t _ Z ptrack 4 Z pcluster

James Mulligan, Yale University 42



Analysis strategy — background

The average combinatorial
background is subtracted
from each jet event-by-event
using the event-averaged
background density

Rho vs. Centrality, Full Jets
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| ALICE Simulation
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p truth (GeV/C

Analysis strategy — jet pt correction

The measured jet pt must be corrected for detector effects (tracking
efficiency, bad channels, ...) and smearing by background fluctuations

We deconvolute or “unfold” the jet pr spectrum for the detector response
and background fluctuations by building a response matrix embedding

Pythia8 events into Pb-Pb data

Properly accounts for centrality-dependent detector effects

Corrects for any residual background contribution
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Analysis strategy — efficiency corrections

There are two further efficiency corrections we must apply:

Efficiency

Jet reconstruction efficiency Kinematic efficiency
Probability to successfully reconstruct a jet at Probability to successfully reconstruct a jet
detector-level (including leading track within the measured detector-level pr range,
requirement), given a truth-level jet given a truth-level jet at a given pr
B > 1
14— 5 i ; ..lll.l.l....
1.23_ E 0.8_— ay .I..
B % i .. ..l
W 2 ool oy i, 1201 Gee
- . " 0.6/— . T '“.
0.8_— : - oy -
0'6;_ .t Nmatched (pjTe:cgen> 0'4:_ = "
0.4— © (pJT’gen> - N ( jet ) |
- truth T,gen oo =
0.2:— : =
00_I I I2|0I I I4|0I I I6|OI I I8|0I I I1(50I I I12|OI I |14|f(;)lgen 00_I — I5|0 — I1(|)0I — I15|OI — I2(|)OI — l;g%nSO

James Mulligan, Yale University 45



_Results — pp jet cross-section Fliane Epple + JM

We measure the inclusive pp jet cross-section for prjet = 20-140 GeV/c
at 5.02 TeV as a reference for jet Raa
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POWHEG,PYTHIA

Results — pp jet cross-section

Eliane Epple + JM

The measurement is consistent with POWHEG + Pythia8
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Results —

°p-Pb jet spectra

Publication in preparation

[mb (GeV/c)]

We measure the Pb-Pb jet spectrum in 0-10% centrality

for prjet = 40-140 GeV/c
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RAA

Results — Jet Raa

Publication in preparation

The first full jet Raa measurement at prjet < 100 GeV/c at 5.02 TeV

Similar suppression observed in R=0.2 and R=0.4
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Results — Jet Raa

ALICE R=0.4 jet Raa is consistent with ATLAS R=0.4 jet Raa
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Results — Jet Raa

< 1.6
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Results — Jet Raa

Measurements compared to theoretical predictions:

LBT provided in arxivi1809.02525  Hybrid model provided by Daniel Pablos

PRC 91 (0549098) JHEP 10 (2014) 19 JHEP 03 (2016) 53
JHEP 03 (2017) 1365  JHEP 03 (2018) 10

SC ETG provided by Haitao Li JEWEL (generated internally)

arxiv:1807.00008 JHEP 03 (2013) 80  JHEP 07 (2017) 141
PLB 769 (242) EPJ C (2016) 76:695
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Results — Jet R AA Publication in preparation

All models qualitatively describe the Raa
But quantitatively, most models have slight tension with the data
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Results: Jet cross-section ratio Eliane Epple + JM

The ratio of jet cross-

+—
)
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N pp provides a G
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INn pp, the jet cross-
section ratio is also
useful to disentangle
hadronization and
underlying event effects
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Results: Jet cross-section ratio

Publication in preparation

No modification in
Pb-Pb is observed
compared to pp

Generally consistent
with previous
measurements at
2.76 TeV showing
NO significant
modification In
R~0.2-0.4
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Results: Jet cross-section ratio Publication in preparation

No modification in
Pb-Pb is observed
compared to pp

Models predict
some modification,
but our resolution is
not good enough to
distinguish them
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Summary

We have measured the level of inclusive full jet suppression In
heavy-ion collisions at low-ptfor , /syy = 5.02 TeV, as well as
the R-dependence of the suppression

Jet Raa shows strong suppression and significant pr-
dependence at low pr

Jet Raa and the jet cross-section ratio show no significant
dependence on R for R=0.2-0.4

Several models exhibit slight tension with the jet Raa

However, the models use different input spectra, different
medium evolution, different hadronization, different leading track
biases, and different ways of fixing model parameters...

\What does it mean for a model to be “consistent” or
“iInconsistent” with measured Ras?

James Mulligan, Yale University
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Outlook

Big picture guestions remain in heavy-ion jet physics:
1. Can we converge on a description of jet energy loss in deconfined QCD
matter?

2. Does deconfined QCD matter contain quasiparticles? If so what are they?

Rich program ahead as we try to answer these questions:

Search for quasiparticles with large-angle scatterings
Jet substructure
Heavy-flavor jets

Multiple avenues to explore jet modification in new
ways and greater detail, and a big boost in Pb-Pb
statistics coming by the end of 2018!
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Thank you!

59



Sackup

60



0.83
O.6f
0.4,
02|

Results — Jet Raa

A
//—

ALICE

Charged particle jets and full jets are consistent
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R=0.3 Jet cross-section ratio
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What have we learned about jet modification”?

1. Jet yields are suppressed

Phys.Lett. B783 (2018) 95-11

NO jet suppression Is ALICE p-Pb |5y = 5.02 TeV

observed in p-Pb
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What have we learned about jet modification”?

3. Soft energy is distributed to large angles

arXiv 1805.05424

25 1"”[ T T ITII1II
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What have we learned about jet modification”?

4. Medium recoll is important to understand

owever the radial moment and momentum dispersion for R=0.2
jets In Pb-Pb does not appear to be sensitive to medium recoll
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R-dependence of jet suppression at,/syy = 2.76 TeV
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ALICE hadron-jet
coincidence
measurement shows
NO significant intra-jet
oroadening from
R=0.2 to R=0.5
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Quark-gluon ratio
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Figure 2: Jet quark fraction as a function of plﬁt in the
different jet rapidity intervals used in this study. The points
show results obtained from PYTHIAS8 simulations, the solid
lines represent results obtained from extended power-law fits
with the parameters shown in Table 1.
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How is the jet core modified?

The Pb-Pb results agree fairly well with Pythia quark jets
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Groomed jet substructure

- Measurement procedure

1. Cluster jets with the anti-kr algorithm,
then re-cluster each jet using the C/A
algorithm

* This produces an angularly ordered
tree, similar to a parton shower

2. Unwind the last clustering step and check

the Soft Drop condition: , . . (A_R)ﬁ
R
3. Discard the softer sub-jet and repeoat

* The resulting hard splittings are described by:

* nsp is the number of splittings that pass the
Soft Drop condition

* Zg, Rg describe the momentum fraction and
angular separation of the first splitting

James Mulligan, Yale University

Z: min(pr.1,PT2)

PT,1 T PT2
/s

1 -z

We use

(zcur, B) = (0.1, 0)




Groomed jet substructure

* Lund diagram:

* Represents the phase-space density of 1
—>2 splittings, described by (z,0)

log 20 1 . min(pr1, pr2)
/ PT,1 T PT2
0
l -z
log1 0
<—large 8  small 6 —g> /
: AR\
N By varying the Soft Drop parameters Zcut, ,8 one can 7 > Zeut (R_)
0

vary the phase space populated in the Lund diagram
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Groomed jet substructure

* Lund diagram:

* Represents the phase-space density of 1
—>2 splittings, described by (z,0)

Large 6 hard splittings
are predicted to be
resolved by the medium
and suppressed

log 20 1

logl/é

<—large @ small 6 —>

i
* By varying the Soft Drop parameters z.ut, 8 one can 7> Zeut (%)
vary the phase space populated in the Lund diagram ’
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Groomed jet substructure — Pb-Pb

* Pb-Pb measurement at y/Snny = 2.76 TeV
* R=0.4, pr=80-120 GeV/c, |n| <0.5
* Detector-level measurement, S
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Groomed jet substructure — Pb-Pb

The zg distribution shows suppression at high z,

That is, the hardest splittings are suppressed in Pb-Pb

No enhancement at small zg min(pr.1, pr.2)
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