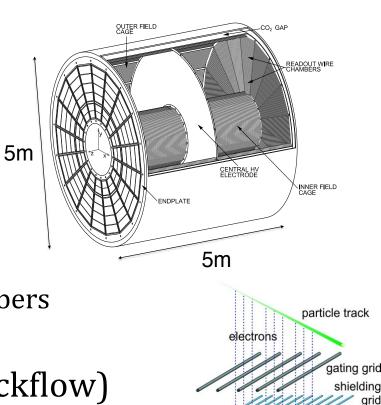


TEST BEAM RESULTS FOR ALICE TPC UPGRADE PROTOTYPES



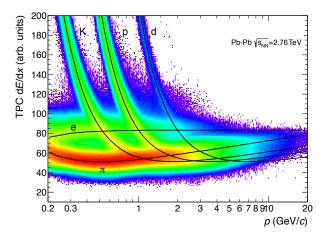
James Mulligan, Yale University for the ALICE TPC-Upgrade Collaboration

APS April Meeting 11 April 2015 J. Mulligan¹, N. Smirnov¹, R. Majka¹, O. Grachov¹, S. Aiola¹, R. Ehlers¹, J. Wiechula², J.W. Harris¹ ¹ Physics Department, Yale University ² Physikalisches Institut, Eberhard Karls Universität Tübingen

ALICE TPC

- □ Specs:
 - ~92m³ active volume
 - Ne-CO₂ (90-10)
 - **B** = 0.5 T
 - 72 readout sectors
 - 18 inner/outer sectors, 2 ends
 - ~560,000 readout pads
 - 4x7.5mm² pads for inner chambers
- Gas amplification: MWPC
- Gating grid (to prevent ion backflow) limits rate to ~3 kHz
 - ~100µs max e⁻ drift, ~200µs grid closure

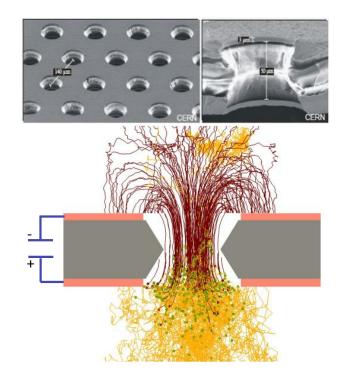
sensing grid

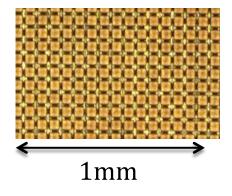

pads

ALICE TPC Upgrade

- LHC will be upgraded during LS2 (2018-2019) to have Pb-Pb collision rates up to 50 kHz
- Need for continuous TPC readout
 Maintain PID performance
 - $\sigma_{\rm E}/{\rm E}$ <12% for ⁵⁵Fe
 - Limit ion backflow

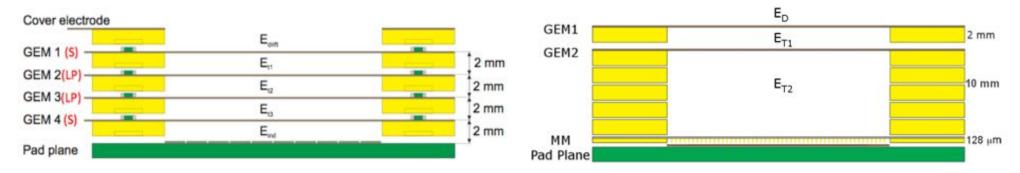
<1% at gain 2000</p>




James Mulligan, Yale University

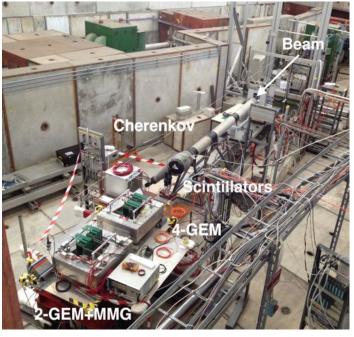
Micro-Pattern Gas Detectors

- MPGDs allow continuous
 operation due to their innate
 ion backflow suppression
- Gas Electron Multiplier (GEM)
- Micro-Mesh Gaseous Structure (MMG or Micromegas)



Upgrade Prototypes

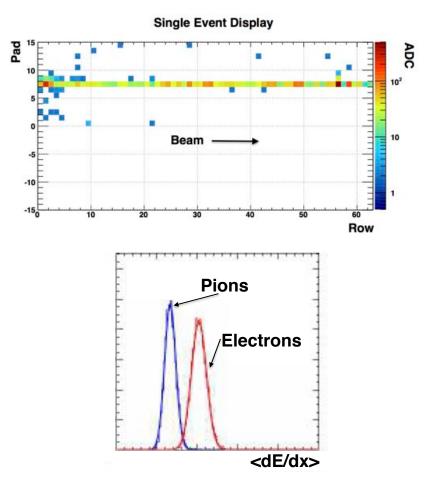
- 4-GEM configuration (baseline upgrade choice)
 - Full-sized inner-readout chamber, 2nd test beam campaign
- 2-GEM+MMG configuration
 - Yale Prototypes: Two 21x26cm 2-GEM+MMG chambers


 \rightarrow This is the main focus presented here

Beam test: November-December 2014 at CERN
 PS beam for dE/dx, SPS for sparking rate

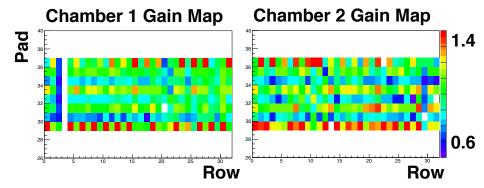
Beam Test: PID Performance

- Goal: Determine dE/dx separation of electrons from pions
- □ Setup:
 - PS secondary beam: 1-3 GeV pions and electrons
 - Cherenkov counter to distinguish electrons from pions
 - Scintillators for trigger
 - Readout electronics from LCTPC collaboration
- ~380,000 events usable (before cuts) for 2-GEM+MMG Yale prototypes

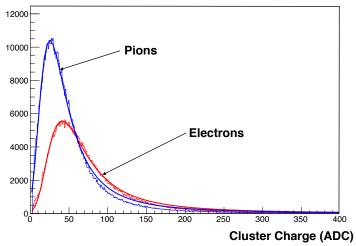


PID Performance: Analysis

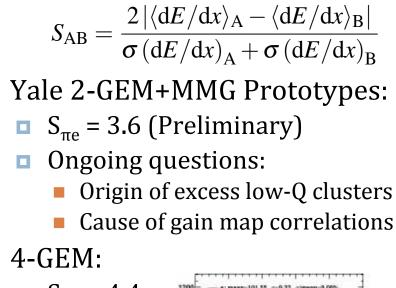
□ Procedure to determine dE/dx:

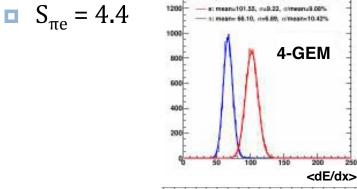

- Clustering: For fixed padrow, find local maximum charge, then sum surrounding 3 bins in pad/time space
- Tracking: Iteratively search rows for nearest cluster, within tracking pad/time window
- Combine tracks from our two chambers
 - 32 padrows each
- For each track, take 70% truncated mean of cluster charges, divide by number of clusters, and add to <dE/dx> histogram
- Gaussian fit dE/dx histogram
- Analysis code adapted from Jens Wiechula (used in 4-GEM beam tests) for our 2-GEM+MMG analysis

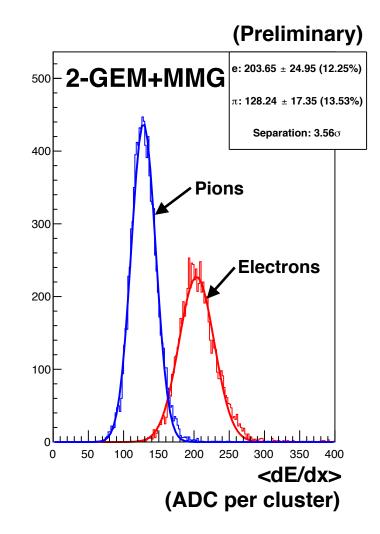
PID Performance: Analysis

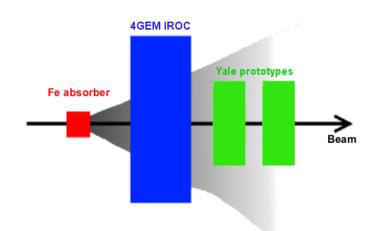

- QA: Cherenkov separation, cluster charge Landau distribution, pad occupancy, etc.
- **Cuts:**
 - Description: Minimum clusters per track: 60
 - Cluster Q_{max} ADC threshold: 3
 - Remove tracks with excess low-Q clusters
 - For pions, >4 clusters with Q<6
 - For electrons, >4 clusters with Q<15
 - Other: one-track events, edge cuts, timing cuts, misses allowed in track, etc.
- Gain Map
 - Apply pad-by-pad gain correction:
 - Average pad signal / Average chamber signal
 - Cause of correlations?
 - Normalize average gain of each chamber

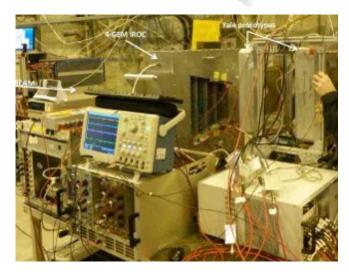
James Mulligan, Yale University






PID Performance: Results





Beam Test: Sparking Rate

- SPS beam: 150 GeV pions incident on Fe absorber (to multiply hadrons)
 - Beam perpendicular to pad plane
 - Ne-CO₂-N₂ (90-10-5)
- Oscilloscope records spark signal
- ~5 x 10¹¹ chamber particles accumulated in test beam
 - 1 month of Pb-Pb in ALICE:
 ~7x10¹¹ per GEM sector

Sparking Rate: Results

□ 2-GEM+MMG:

- At optimal HV setting: P~3.5 x 10⁻¹⁰ per chamber particle
 - Spark rate depends on MMG voltage, since MMG is 125µm from pad plane
- Spark does not harm MMG, but gives dead time (~μs)

#	$\Delta U_{\rm GEM1}$ (V)	$\Delta U_{\rm GEM2}$ (V)	V _{MM} (V)	gain	Discharge probability
1	250	210	440	2050	$(2.0\pm0.6) imes10^{-9}$
2	260	220	420	2000	$(3.5\pm1.0) imes10^{-10}$
3	0	0	420	450	$(1.7\pm0.5)\times10^{-10}$

□ 4-GEM:

- □ ~6.4 x 10⁻¹² per chamber particle (3 sparks observed)
- Dead time ~ seconds to minutes

Conclusion

- Successful test beam campaign demonstrates good
 PID performance for 4-GEM, 2-GEM+MMG designs
 4-GEM slightly better, more mature
- 2-GEM+MMG needs more R&D (e.g. sparking), but worth pursuing due to lower ion backflow
 - Possible second test beam in coming months
- 4-GEM design chosen for ALICE TPC-Upgrade
 TDR Addendum Feb 2015
- Construction beginning; US building inner sectors, Europe outer sectors