

Inclusive jet measurements in Pb-Pb collisions at $\sqrt{s_{_{NN}}} = 5.02$ TeV with ALICE

James Mulligan, Yale University

APS April Meeting 16 April 2018 for the ALICE Collaboration

- Since the discovery of the QGP, there have been two particularly exciting discoveries:
 - Strong coupling: η /s and the AdS/CFT correspondence
 - Small systems: The nearside ridge, strangeness enhancement
- (percent) The implications of these discoveries are not yet clear, 10^{10} but they point to fundamental insights about QCD
- Can jet physics offer a similar insight?

Introduction

- The past: let suppression as proof of the QGP
- The present: Learn about the structure of the hot QCD medium by understanding how jets interact with it
- Two indirect approaches discussed in this talk:
 - Inclusive spectra: Measure inclusive jet spectra at different collision energies and kinematical ranges, to constrain jet energy loss models
 - Jet substructure: Investigate how quenching modifies the structure of jets

Inclusive jet measurements

□ ALICE has published full jet R_{AA} down to $p_T = 40$ GeV at $\sqrt{s_{NN}} = 2.76$ TeV

- Strong quenching observed
- Jet cross-section ratio R=0.2 / R=0.3 published for charged jets at 2.76 TeV

Consistent with Pythia

 This talk: Full jet measurement at 5.02 TeV in 0-10% centrality

APS April Meeting, 16 April 2018

Jet reconstruction in ALICE

ALICE reconstructs "full" jets by combining charged tracks with neutral EMCal clusters using the anti- k_{T} algorithm:

 $p_{\mathrm{T}}^{\mathrm{jet}} = \sum_{i} p_{\mathrm{T},i}^{\mathrm{track}} + \sum_{i} p_{\mathrm{T},j}^{\mathrm{cluster}}$

- The average combinatorial background is subtracted event-by-event using k_{T} charged jet p_{T} -density, scaled by a calorimeter density factor
- Full jets are more accurate than charged jets, and more directly comparable to theory
 - Experimentally, they are more challenging
- ALICE precision tracking allows jet reconstruction down to low p_T

Analysis method

- $\square Reconstruct R = 0.2, 0.3 jets$
 - 0-10% centrality
- Suppress combinatorial jets by:
 - Requiring jets to contain a 5 GeV charged track
 - Selecting a measured range ≈5σ above the background fluctuations
- Unfold detector response and background fluctuations
 - Build a response matrix by embedding Pythia8 events into Pb-Pb data
- Correct the unfolded result for kinematic efficiency and jet reconstruction efficiency
- Dominant systematics:
 - Tracking efficiency
 - Unfolding regularization

Results – Jet spectra

Results – Jet R_{AA}

James Mulligan, Yale University

Results – Jet cross-section ratio

James Mulligan, Yale University

Jet core modification

- How is the jet core modified?
 - We know that jets are quenched, and we know there is soft energy at large angles
- Several observables show that the softer parts of the jet core are removed from the jet core
 - ALICE R=0.2 charged jet g, p_{T,D} at show modification towards harder core
 - ATLAS/CMS jet fragmentation shows large z enhancement
- What exactly does this mean?
 - Quark/gluon modification results in these distributions, since more quark jets means more high-z jets?
 - Specific quenching mechanism strips out softer parts of core?

ALI-PREL-101584

 $p_{T}D$

Conclusion

- New measurement of full jet R_{AA} from ALICE at 5.02 TeV, which can further constrain jet quenching models
- Jet cross-section ratio adds to the continuing discussion of how exactly the medium modifies the jet structure

Jet fragmentation

APS April Meeting, 16 April 2018

James Mulligan, Yale University