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QCD

We know some basic features of QCD

The Lagrangian
The running of the coupling (confinement, asymptotic freedom)

Lattice QCD predicts the hadronic spectrum rather well

But most of the emergent behaviors of QCD are not understood
The origin of confinement

The proton spin puzzle
Certain bound states are unexpectedly observed / not observed

Basic behaviors of de-confined QCD matter

“The strongest and least understood of the fundamental forces”
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De-confined QCD matter

Two particularly exciting discoveries:

Strong coupling: n/s and the AdS/ Y I v
CFT correspondence

— 1)/s=0.08 . -
Small systems: The nearside ridge,
strangeness enhancement

|

v, (percent)

The implications of these discoveries | |
are not vet clear, but they point to ot
fundamental insights about QCD Py eVl
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De-confined QCD matter

Two particularly exciting discoveries: 25

- Strong coupling: /s and the AdS/
CFT correspondence

- Small systems: The nearside ridge,
strangeness enhancement

v, (percent)

The implications of these discoveries

are not vet clear, but they point to ot

fundamental insights about QCD py[GeV]

Can jet physics offer a similar insight?
The past: Jet suppression as proof of the QGP

The goal: Learn about the structure of the hot QCD medium
by understanding how jets interact with it
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Jets in heavy-ion physics

The basic idea is simple: Compare jet observables in heavy-
ion collisions to those in proton-proton collisions

Y.J. Lee, CMS

In practice:
- Which observables?

How to disentangle background?

How to address multi-stage and multi-scale evolution?

How to compare experiment to theory?

James Mulligan, Yale University



Jets in heavy-ion physics

igh-pT1 objects are measured at R

|IC and the L

C

For example, hadron Raa shows suppression by the medium
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Why move from hadrons

to jets?

- More accurate reflection
of interaction with QGP

- Less dependent on

nadronization

- Rich set of observables!
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What have we learned about jet modification”?

1. Jet yields are suppressed
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What have we learned about jet modification”?

1. Jet yields are suppressed

Phys.Lett. B783 (2018) 95-11

NO jet suppression Is ALICE p-Pb |5y = 5.02 TeV
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What have we learned about jet modification”?

2. The fragmentation pattern of a jet impacts modification

A. Jets with wide-angle hard splittings lose more energy
than jets with collinear hard splittings

B. Gluon jets lose more energy than quark jets

James Mulligan, Yale University



What have we learned about jet modification”?

A. Jets with wide-angle hard splittings lose more energy

than jets with collinear hard splittings
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What have we learned about jet modification”?

B. Gluon jets lose more energy than quark jets
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What have we learned about jet modification”?

3. Soft energy is distributed to large angles

Di-jets with large pt imbalance have an
excess of soft particles at large angle

The origin of this effect remains delbated
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What have we learned about jet modification”?

3. Soft energy is distributed to large angles

arXiv 1805.05424
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What have we learned about jet modification”?

4. Medium recoll is important to understand

AS a jet propagates through the medium, it induces
medium particles to flow in the direction of the jet

The jet mass in Pb-Pb for R = 0.4 measured by ALICE
may be highly sensitive to medium recoll

60 < Py ch jet < 80 GeV/c 80 < o ch jet <100 GeV/c 100 < Pt e jot <120 GeV/c

0.2F 0
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o T B
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Phys. Lett. B776 (2018) 249-264
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What have we learned about jet modification”?

4. Medium recoll is important to understand

owever the radial moment and momentum dispersion for R=0.2
jets In Pb-Pb does not appear to be sensitive to medium recoll
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What have we not learned?

We do not know the cause of the large-angle soft excess: medium
recoll vs. large-angle radiation

We have not distinguished between various pQCD-based energy
loss models, or the role of strongly-coupled energy loss

We often do not have apples-to-apples comparisons of theory to
experiment

Biases in the measurements due to background
Multi-stage evolution of medium
Hadronization effects

We need further constraints of models, for observables which
can be meaningfully compared to theory

James Mulligan, Yale University 16



Measuring jets in ALICE

ALICE reconstructs jets at mid-
rapidity (n < 0.7) in pp, p-Pb, Pb-Pb
collisions at4/syny = 2.76 — 13 TeV

Charged particle jets (charged jets)

High-precision tracking down
to pT,traCk = 150 MeV/c

Jets (full jets)

Addition of particle information
from the EM calorimeter down
to pT,Cluster = 300 MeV/c

James Mulligan, Yale University 17



Measuring jets in ALICE

Strengths of ALICE

| ow-momentum constituent
thresholds allows to measure
softest components of jet

High-precision spatial resolution
of tracking system allows precise
jet substructure measurements

Particle identification in jets

James Mulligan, Yale University 18



Measuring jets in ALICE

Most ALICE jet measurements use charged particle jets

Today, | will focus on full jets (charged + neutral)
Full jets allow a meaningful comparison to theory

But significant experimental complication!
+ And reduced statistics due to limited coverage

James Mulligan, Yale University 19



Measuring jets in ALICE

Most ALICE jet measurements use charged particle jets

Today, | will focus on full jets (charged + neutral)
Full jets allow a meaningful comparison to theory

But significant experimental complication!
+  And reduced statistics due to limited coverage

Inclusive jet measurement in pp, Pb-Pb at /sy = 95.02 TeV

1. Measure jet Raa for R=0.2-0.4
2. Measure Pb-Pb jet cross-section ratio

James Mulligan, Yale University 20



(1) Jet Raa at

SNN — 502 T@V

Goals:

Constrain energy loss models by providing the first full jet
measurements at low transverse jet momentum at 5.02 TeV

Measure R-dependence of jet Raa

IS energy recove
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(2) Pb-Pb jet cross-section ratio R=0.2/R=0.4

The ratio of jet cross-sections at different R is an inclusive jet shape
observable, sensitive to the R-dependence of jet energy loss

We expect collimation of the jet core, but also energy flowing to
larger angles — what is the net result for R=0.2 —> R=0.47

ALICE has published the
charged jet cross-section
ratio R=0.2/R=0.3 at
2./0 TeV

Consistent with Pythia
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R-dependence of jet suppression at,/syy = 2.76 TeV
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There is no measurement of R-dependence at 5.02 TeV

James Mulligan, Yale University
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R-dependence of jet suppression at,/syy = 2.76 TeV
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ALICE hadron-jet
coincidence
measurement shows
NO significant intra-jet
oroadening from
R=0.2 to R=0.5
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Analysis strategy

Three main pieces to the analysis:

Measure t

Deal with -

he large com

ne jet pt — combine track pr and EMCal pr

oinatorial background

Correct the jet p1 for detector and resolution effects

Improvements relative to the 2.76 TeV analysis

Extend to R=0.3, R=0.4

- Allows examination of modification to jet shape
Refine analysis technigue
- Better understanding of our tracking and calorimetry

- Ut

ization of embedding-based jet pT correction

James Mulligan, Yale University 25



Analysis strategy — background

The average combinatorial
background is subtracted
from each jet event-by-event
using the event-averaged

background density
Rho vs. Centrality, Full Jets
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pl" (GeVic

Analysis strategy — jet pt correction

Unfold the jet pTt spectrum for detector response and

background fluctuations

Build a response matrix by embedding Pythia8

events into Pb-Pb data

- Properly accounts for centrality-dependent detector effects
- Corrects for any residual background contribution
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Results — pp jet cross-section

Publication in preparation

We measure the inclusive pp jet cross-section at 5.02 TeV
as a reference for jet Raa
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i ALICE Work in Progress
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Results — pp jet cross-section

Publication in preparation

The measurement is consistent with POWHEG + Pythia8

Stay tuned for unbiased measurement to lower pr...

ALICE Work in Progress
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[ [ ] Scale uncertainty

ALICE Work in Progress
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quUHS — Db—Pb Jet SpeCtra Publication in preparation

We measure the Pb-Pb jet spectrum in 0-10% centrality from
priet = 40-140 GeV/c
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< 1.8
c - ALICE Work in Progress
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Results — Jet Raa

Publication in preparation

The first Pb-Pb full jet measurement at low pTjet at 5.02 TeV

Similar suppression observed in R=0.2 and R=0.4
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Results — Jet Raa

Publication in preparation

Charged particle jets and full jets are consistent
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Results — Jet Raa

ALICE R=0.4 jet Raa is consistent with ATLAS R=0.4 jet Raa
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Results — Jet R AA Publication in preparation

RAA

JEWEL appears to under-predict the jet Raa at 5.02 TeV
More theoretical comparisons forthcoming...

1.8 1.8
- ALICE Work in Progress - ALICE Work in Progress
.60 py.pp 0-10% Sy = 5.02 TeV .60 pp.pp 0-10% Sy = 5.02 TeV
i NN ) i NN )
1.4 pp |y =5.02TeV 1.4 pp |Syy =5.02 TeV
i ;- _ full ch i . _ full ch
| of Alnt:j khT R=02 1 7"1<05,17"1<0.7 1 of Alnt:1 khT R=0417"1<03,171<05
pTea “'>5 GeV/c i p:a "> 7 GeVlc
e e B f -
- m Fulljets [ JEWEL, recoils on, 4MomSub - m Fulljets [ JEWEL, recoils on, 4MomSub
0.8 — || Correlated uncertainty [l JEWEL, recoils off 0.8 [ | Correlated uncertainty I JEWEL, recoils off
L Shape uncertainty - Shape uncertainty
0.6/ | 06f |
: T TR T : T
0.4 — N " ! | F 0.4 M
0.2¢ = 0.2F ’_’
O . | | | | | O i | | | | | |
0 50 100 0 20 100
p_. (GeV/c) | | p_.  (GeV/c)
T,jet JEWEL provided by Ritsuya Hosokawa T,jet

James Mulligan, Yale University 34



Results: Jet cross-section ratio

Publication in preparation

The ratio of jet cross-
sections R=0.2 / R=0.4
IN PP provides a
baseline for Pb-Pb

INn pp, the jet cross-
section ratio is also
useful to disentangle
hadronization and
underlying event effects
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Results: Jet cross-section ratio Publication in preparation

5 1.07
i gﬁ - Pb-Pb 0-10% Sy = 5.02 TeV
o o 1.4F  ALICE Work in Progress
= 23_ Anti-ky 177021<0.5 1 n=041<0.3
The ratio of jet cross- 315t | P >7GeVic
: x| % Y N e
sections R=0.2 / R=0.4 Q| F b
in Pb-Pb is an inclusive © 0.8}
jet shape observable 060 m W T
Ar
0 B 0-10% Pb-Pb
02 B Correlated uncertainty
I Shape uncertainty
. | | | I |
OO 50 100

p. . (GeVic)

James Mulligan, Yale University 36



Results: Jet cross-section ratio

Publication in preparation

No modification in
Pb-Pb is observed
compared to pp

Generally consistent
with previous
measurements at
2.76 TeV showing
NO significant
modification in
R~0.2-0.5

= 1.6
< 2 -
i gﬁ Pb-Pb 0-10% |5y, =5.02 TeV
2 o 1.4F  ALICE Work in Progress
O _
L®) ' R=0.2 R=0.4
N 1oL Anti-k; Injet | < 0.5 Injet | <0.3
o - lead,ch lead,ch
% _g - Preopy 7 GeV/c pT,pp >5 GeV/c
o 5 1
ol F
Ql _
O _8. [
0.8¢
0.6 = =
- —~—¢
0.4 .
[ B 0-10% Pb-Pb ¢ PP
O_ 2 L Correlated uncertainty Correlated uncertainty
B Shape uncertainty Shape uncertainty
O i L L L L | L L L L | L L L
0 50 100

James Mulligan, Yale University

pT’jet (GeV/e)

37



Outlook

We have placed constraints both on observables that are

modified and observables that are not modified

Jet Raa shows strong suppression and pr-dependence at low pr

Jet Raa Is approximately independent of R for R=0.2-0.4

Jet cross-section ratio R=0.2/R=0.4 shows no significant modification

Our understanding of jet energy loss continues to be refined
It is essential to have MC implementations of models

We are still searching for a breakthrough to learning
something fundamental about de-confined QCD...

James Mulligan, Yale University
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Future directions — Long-term goals

1. Does de-confined QCD matter contain quasiparticles?

f it does, what are they?

And how can we reconcile this with the strongly-
coupled fluid description”?

2. Can we successfully compare measured jet observables
to predictions and converge on a description of jet
energy loss”

These are crucial to understand how a strongly-coupled
liquid emerges from de-confined QCD
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Future directions — Near-term

The LHC will run Pb-Pb collisions later this year
ALICE anticipates a large gain ~10x central statistics

Search for quasiparticles with large-angle scatterings
Jet substructure
Machine learning

Multiple avenues to explore jet modification in new ways
and greater detail, and a big boost in Pb-Pb statistics is
coming in 2018!
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Thank you!
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Sackup
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Scanning Jet Radlus to Study Quenching
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2./06 1eV pp comparison
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Quark-gluon ratio
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Figure 2: Jet quark fraction as a function of plﬁt in the
different jet rapidity intervals used in this study. The points
show results obtained from PYTHIAS8 simulations, the solid
lines represent results obtained from extended power-law fits
with the parameters shown in Table 1.
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How is the jet core modified?

The Pb-Pb results agree fairly well with Pythia quark jets
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Groomed jet substructure

- Measurement procedure

1. Cluster jets with the anti-kr algorithm,
then re-cluster each jet using the C/A
algorithm

* This produces an angularly ordered
tree, similar to a parton shower

2. Unwind the last clustering step and check

the Soft Drop condition: , . . (A_R)ﬁ
R
3. Discard the softer sub-jet and repeoat

* The resulting hard splittings are described by:

* nsp is the number of splittings that pass the
Soft Drop condition

* Zg, Rg describe the momentum fraction and
angular separation of the first splitting

James Mulligan, Yale University

Z: min(pr.1,PT2)

PT,1 T PT2
/s

1 -z

We use

(zcur, B) = (0.1, 0)




Groomed jet substructure

* Lund diagram:

* Represents the phase-space density of 1
—>2 splittings, described by (z,0)

log 20 1 . min(pr1, pr2)
/ PT,1 T PT2
0
l -z
log1 0
<—large 8  small 6 —g> /
: AR\
N By varying the Soft Drop parameters Zcut, ,8 one can 7 > Zeut (R_)
0

vary the phase space populated in the Lund diagram
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Groomed jet substructure

* Lund diagram:

* Represents the phase-space density of 1
—>2 splittings, described by (z,0)

Large 6 hard splittings
are predicted to be
resolved by the medium
and suppressed

log 20 1

logl/é

<—large @ small 6 —>

i
* By varying the Soft Drop parameters z.ut, 8 one can 7> Zeut (%)
vary the phase space populated in the Lund diagram ’
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Groomed jet substructure — Pb-Pb

* Pb-Pb measurement at y/Snny = 2.76 TeV
* R=0.4, pr=80-120 GeV/c, |n| <0.5
* Detector-level measurement, S
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Groomed jet substructure — Pb-Pb

The zg distribution shows suppression at high z,

That is, the hardest splittings are suppressed in Pb-Pb

No enhancement at small zg min(pr.1, pr.2)
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Groomed jet substructure Pb- Pb
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Groomed jet substructure — Pb-Pb

nsp is the number of
splittings that satisfy the
Soft Drop condition

For1l<nsp<7, thereisno
significant modification in
Pb-Pb compared to
embedded Pythia

For nsp=0, there is slight
enhancement in the
number of jets that fail
the Soft Drop condition
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