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Recap

aa R
Quantum bit (qubit): |y) =4gy|0)+a;|1) = (61(1))

When we measure the state |y), we obtain either:
a State |0), with a probability |a, \2
O State | 1), with a probability | a, B

For N qubits, there are 2" amplitudes

eg. |w)=a,]000)+a,|001) + a3|010) + a,|011) + a5|100) + ax| 101) + a;|110) + ag|111)

A quantum operation modifies all of these 2 amplitudes simultaneously!

N N
a) =) a;ly;) = by =) bl
=1 =1
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Quantum circuits

Nothing more than (clever) unitary matrix multiplications!

Example: SWAP circuit

a b
SWAP (|a) ® |b)) = CNOT, , x CNOT, ; X CNOT,, , X ( 0) ® ( O)
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QC can solve some classically hard problems

P: Polynomial-time solution on classical computer

BQP: Polynomial-time solution on quantum computer

NP

Classical: exponential
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QC can solve some classically hard problems

P: Polynomial-time solution on classical computer

BQP: Polynomial-time solution on quantum computer

" Dynamics of many-body non-relativistic

quantum system Feynman (1982),
— — ————— Lloyd (199¢)

NP

- Scattering in scalar field theory

Jordan, Lee, Preskill (2012-2018)

QCD?

Preskill (2018), Kico, Savage (2018),
Muschik et al. (2016), Davoudi et al. (2019), ...
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Few qubits Decoherence

The quantum state of a qubit is

Current devices are limited to . .
stable only for a limited time

O(10) — ©(100) qubits
T:decay time | 1) — |0)
R
—~-

I’5: dephasing time

1
1) » —(]0) + |1
1) \/5(\>+\>)

2026 2027

Need more qubits to achieve
quantum advantage

Need longer coherence times to
increase the “gate depth” of circuits

Current quantum devices

Gate noise

Single- and two-qubit gate
operations are imperfect

Ufaulty =A Uideal

Uideall¥)
Ufault_\' | ‘r'")

Need smaller gate noise to

\ perform quantum error correction
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Future applications of quantum computers

Simulation of quantum field theory

/ o o
- Quantum machine learning
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Outline

. Many-body nuclear structure

2. Real-time dynamics of scattering and hadronization

Structure Particle Data Group, LBNL © 2014
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Outline

|. Many-body nuclear structure
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Many-body nuclear physics

Nucleus of A nucleons can be described by a Hamiltonian

H=T1T+YV

SN

Kinetic energy  Potential energy

H encodes the ground state and excited state
energies of the nucleus

H‘Wo) =th//o>
H\l//1>=E1\l//1>

Goal: describe the quantum properties of large nuclei, such as the ground state energy
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Variational principle

The expectation value of the Hamiltonian is always greater than or equal to its
smallest eigenvalue:

Etrial — <l//tria1 ‘ H ‘ l//trial> > E()

where E is the ground state energy of the system

We can use this to approximate the ground state energy:

Parameterize the wavefunction: |y(6))
Guess an initial set of parameters: |y ...) = |W(6,i.1))

.

2.

3. Compute the energy of that wavefunction: E ... = (Wi | H | W, ia1)
4. Update our guess for the trial wavefunction parameters, and repeat!
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Variational Quantum Eigensolver

We can implement this in a hybrid quantum-classical algorithm

Quantum Classical
computer [ computer

Choose parameters 0,

rial
in a quantum circuit U(60)

| Wirial)
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Variational Quantum Eigensolver

We can implement this in a hybrid quantum-classical algorithm
Quantum Classical
computer Jl computer

Choose parameters 0,
in a quantum circuit U(60) ) = U6)]0---0)
trial/ —

rial _ Initialize the trial wavefunction:

| Wirial)
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Variational Quantum Eigensolver

We can implement this in a hybrid quantum-classical algorithm

Quantum Classical
computer ll computer

Choose parameters 0&... - : :
P trial — Initialize the trial wavefunction:

in a quantum circuit U(0) [y ) = U6)]0---0)
trial/ =

Measure the energy:
Etrial = <l//tria1 ‘ H | l//trial>
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Variational Quantum Eigensolver

We can implement this in a hybrid quantum-classical algorithm

Quantum Classical
computer ll computer

Choose parameters 0,

, S0 T Vnal - Initialize the trial wavefunction:
in a quantum circuit U(6) ) = U()]0---0)
ria
Classical optimizer &
(e.g. SPSA)

Measure the energy:

@ E
ompare L Eia = Waia | H | Wiar)

rial to Emin
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Variational Quantum Eigensolver

We can implement this in a hybrid quantum-classical algorithm

Quantum Classical
computer ll computer

rial _ Initialize the trial wavefunction:

in a quantum circuit U(0) [y ) = U6)]0---0)
trial/ =

Classical optimizer &
(e.g. SPSA)

Choose parameters 0,

Measure the energy:
Compare £,..,to £ .

Etrial = <l//tria1 ‘ H | l//trial>

Note: Eigenvalues can also be found by the Quantum Phase Estimation algorithm
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VQE for deuteron ground state energy

Hamiltonian obtained from effective field theory

N—1

Hy= »

(W'|(T + V) n)al, ay

n,n’'=0

Quantum circuit

James Mulligan

_n—l
11-2

Results

Mapping to qubits

(X, +1Y,)

Dumitrescu et al.,

PRL120,210501 (2018)
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Outline

2. Real-time dynamics of scattering and hadronization
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Solving the equations of QCD

1
& == FiF"+ )4, (ir'D,~m)q,
=1

& ~a

Lattice QCD

Perturbative QCD

For a, < 1, compute scattering For low-density systems, compute static
amplitudes with Feynman diagrams quantities with lattice regularization
0 Hadron spectra
‘ o % | 0 Deconfinement
%, & B P EEn i transition
A & ® = | Ei mus O Chiral symmetry
6=09+acD+a26c?®+ ... \AKT restoration

f
gluon quark

...but no dynamics!

...bUt no strong coupling!

James Mulligan REYES Nuclear Mentoring Program: Quantum Computing, Part 2 Aug |1 2022



Real-time dynamics

t!

jet?

-energy quark or
to a

N

How does a high
gluon fragment

gluons into hadrons!

What are the dynamics that confine

quarks and

Aug |1 2022
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Quantum simulation o
A quantum computer can naturally simulate a quantum system described by a Hamiltonian H

(1) Initial state preparation
[0---0) = |w(0))

(2) Time evolution

|y (0)) |y (1))

where Uy = e~ Hh

(3) Measurement
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Simulating quantum field theories

There is an extra complication if we want to simulate QCD: \
it is a quantum field theory — the particle number is not fixed teo ef
e
-1 This requires us to simulate fields at all points in ‘ pEERnEE

spacetime: lattice QCD :

T
gluon quark
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Simulating quantum field theories

There is an extra complication if we want to simulate QCD: \
it is a quantum field theory — the particle number is not fixed

_
-1 This requires us to simulate fields at all points in ‘ T
spacetime: lattice QCD :

T
gluon quark

However, traditional Lattice QCD cannot simulate dynamics due to infamous sign problem

Integrals of form: [e’gt Real time Imaginary time
. [ — 1t
T oG
Traditional lattice QCD uses \M}V\V i i
imaginary time, not real time ul WMWWMWUJV /\
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Quantum simulation of real-time dynamics

Hamiltonian formulation of field theories

® ® ® ®
0 Discretize space, keep time continuous e o o o
U DIgItIZe fields Kogut, Susskind "75 o o o o
® ® ® ®
o—0 ® ®

The matrix H will be huge...but we can use quantum simulation!
Bauer, Nachman, Freytsis (2021)

|y (0)) Uy(t) |y (1))

Hilbert space has dimension

v g - # of digitized field values
(n¢) N : # of lattice points per dim
d : # of dimensions

—iHt/h

where Uy =e
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Example |: Scattering in scalar field theories

Can be simulated efficiently using quantum computers!
Jordan, Lee, Preskill (2014)

enry Lamm Quantum Algorithms for Quantum
Field Theories

Stephen P. Jordan,'* Keith S. M. Lee,’ John Preskill’

Quantum field theory reconciles quantum mechanics and special relativity, and plays a central
role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering

7«') probabilities in a massive quantum field theory with quartic self-interactions (¢* theory) in
spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles,
a : their energy, and the desired precision, and applies at both weak and strong coupling. In the

strong-coupling and high-precision regimes, our quantum algorithm achieves exponential
' U ad < { )

speedup over the fastest known classical algorithm,
C

pp)
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Example 2: Hadronization

Magnifico, Dalmonte, Facchi,

, , Pascazio, Pepe, Ercolessi (2020)
Schwinger model: QED in 1+1D « 3
1.00
0 Confinement 0- | Jong, Lee, Mulligan,
a Chiral symmetry breaking Ploskon, Ringer, Yao 0.75
- 0.50
OO0OOO s
@ VIO - 0.00
. . . - —0.25
Real-time picture of string
breaking mechanism ~0.50
. - E —0.75
Electric field < >
| | | | _1.00

Long-term goal: QCD hadronization 0 25 50 75 100 125 150 175 200

2 C
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The path towards QCD

Quantum computers have opened the prospect to simulate real-time dynamics of QCD
O We do not yet know whether it is possible!

0 Fundamental question: Can any system realized in nature be computed efficiently by a quantum computer?

But there are several major challenges Hooo
0 s it possible to efficiently encode H -, into quantum gates? S
D ° . 7

How to enforce gauge invariance! H 1, sical+unphysical
0

Klco et al. (2021)

Many ongoing efforts: Baer et al. (2021)
: . el Shaw et al. (2020)

O Formulate how to efficiently digitize QCD Raychowdhury, Stryker (2020)
O Simulate simpler QFTs in order to gain insights about QCD Alexandru et al. (2019)

Davoudi et al. (2019)
Klco, Savage (2018)
Muschik et al. (2016)
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Outline

Structure Particle Data Group, LBNL © 2014

Cosmic Microwave .
formation

Background radiation

Accelerators is visible

Inflation
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3. High-temperature/density QCD

t = Time (seconds, years)

E = Energy (GeV)
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The landscape of QCD matter

QUARK - GLUOI.\I PLASMA

N
-
-

[Tl
Q)
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D

Temperature T [MeV]

@.
9
9
9

. ' Meutron stars
0 Net Baryon Density
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The quark-gluon plasma

If we heat nuclear matter to 7'~ 150 MeYV,
quarks and gluons become deconfined into a

uark=-gluon plasma
9 g P This phase of matter filled the universe for most

of the first few microseconds after the Big Bang

Structure Particle Data Group, LBNL © 2014
formation

Cosmic Microwave
Background radiation

Accelerators is visible

®® _
'

Inflation

Weiyao Ke

t = Time (seconds, years)

E = Energy (GeV)
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Heavy-ion collisions

= \\ . We collide nuclei together at the
e Eewesl e N Large Hadron Collider (LHC)
Relativistic Heavy lon Collider (RHIC)

to produce droplets of hot, dense
quark-gluon plasma

: X Soft collisions transform
. ' gty AR : : -
: oo e > kinetic energy of nuclei into
§ e we o region of large energy density

|
‘u
i

L

T~ 150-500 MeV ~ t~ O (10 fm/c)
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Potential applications for quantum computing

High density QCD: Lattice QCD can only
calculate static quantities at

QUARK - GLUON PLASMA

M
Q
=t
<
=
=.
<
®
ez |
%
M

Temperature T [MeV]

0 Net Baryon Density

"\

not calculable: sign problem
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Potential applications for quantum computing

High density QCD: Lattice QCD can only | Real-time dynamics of probes evolving
calculate static quantities at through the quark-gluon plasma

QUARK - GLUON PLASMA In vacuum: perturbative QCD
. . 0 No sense of ‘“time evolution”

L
Q
=
<
(=
=4
<
®
ez |
%
D

Temperature T [MeV]

In medium: must combine probe evolution
with hydrodynamic evolution of the QGP

0 Net Baryon Density

"\

not calculable: sign problem
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Example |: Transport coefficients

Cohen, Lamm, Lawrence,Yamauchi (2021)
The quark-gluon plasma can be characterized by

various transport coefficients:
O Shear viscosity
O Bulk viscosity

O Transverse diffusion
ao...

Can be computed from energy-momentum tensor:

1
T, = Zg,u,Tr (FopgFOP| — Tr [FuaFY]

Modest qubit requirement: =~ 10* qubits for gluonic theory
- More tractable than full simulation of quark-gluon plasma
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Example 2: Probing the quark-gluon plasma

Simulate the rate of heavy quark bound pairs (quarkonium)
that are “melted” by the quark-gluon plasma)

Open quantum system formalism

Subsystem - Probe — Jet, heavy quarks, ...

| Environment - Nuclear matter

H(t) = Hs(t) + Hp(t) + Hi(t)

\\ —
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Example 2: Probing the quark-gluon plasma

Simulate the rate of heavy quark bound pairs (quarkonium)

that are “melted” by the quark-gluon plasma) Jong, Metcalf, Mulligan, Ploskon, Ringer, Yao
PRD 104,051501 (2021)

t |fm/c|] (T = 300 MeV)
|O> o 0 D 10 15 20 25
Trace out 1.2 IBM Q Vigo, Neyele = 1,9 = 0.3
|0> —] e—z’J\/At o 1 N Encorrected — Simulator, Neyele = 1
eadout corrected Runge — Kutta
1 O . 2 ReadOUt —+ RIIM COrreCted " Thermal equﬂibrium
[Ps) e s Al A =
A 0.9
0.8 1
............
| 0.7 1 3 bi
° ° U |tS . _'_
Py(?) fraction of pairs that ol 3 | | | —
0 10 20 30 40

remains in “bound state”
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https://arxiv.org/abs/2010.03571

Summary

Quantum computing offers potential opportunities to vastly expand our

understanding of QCD

J

- Many-body nuclear structure ‘
' Real-time dynamics of scattering and hadronization - - -
| - High-temperature/density QCD %

O

-

J

Short-term: Current quantum hardware is too small and noisy to achieve
quantum advantage, but it is an important time to explore potential applications

Long-term: Determining whether QCD can be simulated efficiently by
quantum computers will give us profound insights about nature
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