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Quantum chromodynamics
202 Summary
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Figure 1 The constituents of the Standard Model of particle physics. The
outer ring contains the matter particles known as fermions. The top half of
this ring represents the six quark flavors: up (u), down (d), strange (s), charm
(c), bottom (b) and top (t). The bottom half are the six leptons: electron
(e), muon (µ) and tau (⌧) and respective neutrinos (⌫e, ⌫µ, ⌫⌧ ). The middle
ring contains the force carriers of fundamental interactions, known as gauge
bosons. The photon (�) carries the electromagnetic force, the gluon (g) the
strong force, while the Z and the W are the carriers of the weak interaction. In
the center lies the Higgs boson, responsible for providing mass to elementary
particles.

matter, which together are thought to make up 95% of the mass-energy content
of the universe. Our search then, continues.

The field of particle physics forms a global community roughly divided into
two camps: theory and experiment. This thesis falls into the theory category
but is intimately connected to experiment - indeed many of its results are
directly confronted with data. This is often referred to by physicists as phe-
nomenology : theory with the purpose of obtaining results that can be compared
to experiment. A theorist’s main instrument is the mathematical framework
known as Quantum Field Theory (QFT). QFT incorporates the theories of
quantum mechanics (suitable for physics at the subatomic scale) and special
relativity (characterizing physics at velocities close to the speed of light) in
order to explain subatomic phenomena at high energies. In fact, the success of

The strong nuclear force — interactions of quarks and gluons

Coupling constant αs

Can we solve the “equations of motion” given that we know the Lagrangian?

 ℒ = − 1
4 Fa

μνFaμν+
6

∑
j=1

qj(iγμDμ−mj)qj

QCD interactions comprise  
of the visible mass in the universe!

≈ 99 %
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Solving the equations of motion
 ℒ = − 1

4 Fa
μνFaμν+

6

∑
j=1

qj(iγμDμ−mj)qj

Perturbative QCD Lattice QCD
For , compute scattering 
amplitudes with Feynman diagrams

αs ≪ 1

σ = σ(0) + αsσ(1) + α2
s σ(2) + . . .

For low-density systems, compute static 
quantities with lattice regularization

Introduction Equation of state Color screening Summary

QCD on a lattice✏

�

�

�

SQCD[U, Â̄, Â] = a
4

ÿ

x

Nfÿ

f =1

Â̄f (x)
!

/D[U(x)] + mf
"

Âf (x)

≠ a
4

ÿ

x

ÿ

µ<‹

2
g2

0

Re tr
)

1 ≠ Uµ‹(x) + O(a2)
*

Dµ[Uµ(x)]Âf (x) =
Uµ(x)Âf (x + aµ̂) ≠ U

†
µ(x ≠ aµ̂)Âf (x ≠ aµ̂)

2a
+ O(a2)

Uµ(x) = exp[ig0Aµ(x)] gauge link
Uµ‹(x) = Uµ(x)U‹(x + aµ̂)U†

µ(x + a‹̂)U†
‹(x) plaquette

HPC=∆

5 / 25

Hadron spectra
Deconfinement 
transition
Chiral symmetry 
restoration
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Hadron spectra
Deconfinement 
transition
Chiral symmetry 
restoration

…but no strong coupling! …but no dynamics!
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Emergence in QCD
While we know the Lagrangian…we still often don’t know how to solve it

Opportunity to study a strongly-interacting, 
many-body quantum field theory

What are the dynamics that confine 
quarks and gluons into hadrons?

What is the landscape of QCD matter? Why Lattice QCD?

Outline

The decomposition of the 
nucleon mass

Non-perturbative renormalization

Results and further challenges
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Outline

1. What is a quantum computer?

2. What are potential uses of quantum computing?

3. What are the challenges to achieve quantum advantage?
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Outline

1. What is a quantum computer?

2. What are potential uses of quantum computing?

3. What are the challenges to achieve quantum advantage?
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Computability

8

Can a computer find an answer in a 
reasonable amount of time?

Given a scientific problem, there are two main questions we want to know:

Given infinite time and memory, can a 
computer eventually solve the problem? 
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Computability
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Can a computer find an answer in a 
reasonable amount of time?

Given infinite time and memory, can a 
computer eventually solve the problem? 

Given a scientific problem, there are two main questions we want to know:

Example: The Halting Problem

Given infinite time, classical 
computers can solve the same 
problems as quantum computers

Given an arbitrary computer program, is 
there an algorithm that can tell us whether 
the program will finish running? No!

1 0 0 1 …
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Computability
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Can a computer find an answer in a 
reasonable amount of time?

Given a scientific problem, there are two main questions we want to know:

Example: The Halting Problem

Given infinite time, classical 
computers can solve the same 
problems as quantum computers

Given an arbitrary computer program, is 
there an algorithm that can tell us whether 
the program will finish running?

But quantum computers can 
solve more problems efficiently

No!

1 0 0 1 …
t

N

Classical

Quantum

Given infinite time and memory, can a 
computer eventually solve the problem? 
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Computational complexity

P

P: Polynomial-time solution on classical computer 

Example: matrix multiplication

Classical computer:   Time = % (N2.373)
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Computational complexity

PNP

P: Polynomial-time solution on classical computer 

NP:  Polynomial-time verification on classical computer 

Example: Traveling salesman problem

What is the shortest route 
between  cities?N

Classical computer:   Time = % ( ∼ 2N)
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Computational complexity

P

BQP

NP

P: Polynomial-time solution on classical computer 

NP:  Polynomial-time verification on classical computer 

BQP: Polynomial-time solution on quantum computer

Example: Simulate the dynamics of an 
-body quantum systemN

Classical computer:   Time = % ( ∼ 2N)
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Computational complexity

P

BQP

NP

P: Polynomial-time solution on classical computer 

NP:  Polynomial-time verification on classical computer 

BQP: Polynomial-time solution on quantum computer

QC can solve some classically hard problems

t

N

Classical: exponential

Quantum: polynomial
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Computational complexity

P

BQP

NP

P: Polynomial-time solution on classical computer 

NP:  Polynomial-time verification on classical computer 

BQP: Polynomial-time solution on quantum computer

Scattering in scalar field theory

QCD?

Jordan, Lee, Preskill (2012-2018)

Dynamics of many-body non-relativistic 
quantum system Feynman (1982), 

Lloyd (1996)

Preskill (2018), Klco, Savage (2018), 
Muschik et al. (2016), Davoudi et al. (2019), …
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Quantum advantage

53-qubit superconducting circuit device

Algorithm: sampling of random circuits

 times faster than best classical 
supercomputers
% (103)

Martinis et al., Nature (2019)

506 | Nature | Vol 574 | 24 OCTOBER 2019

Article
developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:

F P x= 2 " ( )# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient 
width and depth such that the classical computing cost is prohibitively 
large. This is a difficult task because our logic gates are imperfect and 
the quantum states we intend to create are sensitive to errors. A single 
bit or phase flip over the course of the algorithm will completely shuffle 
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with 
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists 
of a two-dimensional array of 54 transmon qubits, where each qubit is 
tunably coupled to four nearest neighbours, in a rectangular lattice. The 

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this 
device is achieving high-fidelity single- and two-qubit operations, not 
just in isolation but also while performing a realistic computation with 
simultaneous gate operations on many qubits. We discuss the highlights 
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a 
macroscopic quantum state, such that currents and voltages behave 
quantum mechanically2,30. Our processor uses transmon qubits6, which 
can be thought of as nonlinear superconducting resonators at 5–7 GHz. 
The qubit is encoded as the two lowest quantum eigenstates of the 
resonant circuit. Each transmon has two controls: a microwave drive 
to excite the qubit, and a magnetic flux control to tune the frequency. 
Each qubit is connected to a linear resonator used to read out the qubit 
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring 
qubits using a new adjustable coupler31,32. Our coupler design allows us 
to quickly tune the qubit–qubit coupling from completely off to 40 MHz. 
One qubit did not function properly, so the device uses 53 qubits and 
86 couplers.

The processor is fabricated using aluminium for metallization and 
Josephson junctions, and indium for bump-bonds between two silicon 
wafers. The chip is wire-bonded to a superconducting circuit board 
and cooled to below 20 mK in a dilution refrigerator to reduce ambient 
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics, 

Qubit Adjustable coupler

a

b

10 mm

Fig. 1 | The Sycamore processor. a, Layout of processor, showing a rectangular 
array of 54 qubits (grey), each connected to its four nearest neighbours with 
couplers (blue). The inoperable qubit is outlined. b, Photograph of the  
Sycamore chip.

Nature | Vol 574 | 24 OCTOBER 2019 | 505

Article

Quantum supremacy using a programmable 
superconducting processor

Frank Arute1, Kunal Arya1, Ryan Babbush1, Dave Bacon1, Joseph C. Bardin1,2, Rami Barends1, 
Rupak Biswas3, Sergio Boixo1, Fernando G. S. L. Brandao1,4, David A. Buell1, Brian Burkett1,  
Yu Chen1, Zijun Chen1, Ben Chiaro5, Roberto Collins1, William Courtney1, Andrew Dunsworth1, 
Edward Farhi1, Brooks Foxen1,5, Austin Fowler1, Craig Gidney1, Marissa Giustina1, Rob Graff1, 
Keith Guerin1, Steve Habegger1, Matthew P. Harrigan1, Michael J. Hartmann1,6, Alan Ho1, 
Markus Hoffmann1, Trent Huang1, Travis S. Humble7, Sergei V. Isakov1, Evan Jeffrey1,  
Zhang Jiang1, Dvir Kafri1, Kostyantyn Kechedzhi1, Julian Kelly1, Paul V. Klimov1, Sergey Knysh1, 
Alexander Korotkov1,8, Fedor Kostritsa1, David Landhuis1, Mike Lindmark1, Erik Lucero1,  
Dmitry Lyakh9, Salvatore Mandrà3,10, Jarrod R. McClean1, Matthew McEwen5,  
Anthony Megrant1, Xiao Mi1, Kristel Michielsen11,12, Masoud Mohseni1, Josh Mutus1,  
Ofer Naaman1, Matthew Neeley1, Charles Neill1, Murphy Yuezhen Niu1, Eric Ostby1,  
Andre Petukhov1, John C. Platt1, Chris Quintana1, Eleanor G. Rieffel3, Pedram Roushan1, 
Nicholas C. Rubin1, Daniel Sank1, Kevin J. Satzinger1, Vadim Smelyanskiy1, Kevin J. Sung1,13, 
Matthew D. Trevithick1, Amit Vainsencher1, Benjamin Villalonga1,14, Theodore White1,  
Z. Jamie Yao1, Ping Yeh1, Adam Zalcman1, Hartmut Neven1 & John M. Martinis1,5*

The promise of quantum computers is that certain computational tasks might be 
executed exponentially faster on a quantum processor than on a classical processor1. A 
fundamental challenge is to build a high-!delity processor capable of running quantum 
algorithms in an exponentially large computational space. Here we report the use of a 
processor with programmable superconducting qubits2–7 to create quantum states on 
53 qubits, corresponding to a computational state-space of dimension 253 (about 1016). 
Measurements from repeated experiments sample the resulting probability 
distribution, which we verify using classical simulations. Our Sycamore processor takes 
about 200 seconds to sample one instance of a quantum circuit a million times—our 
benchmarks currently indicate that the equivalent task for a state-of-the-art classical 
supercomputer would take approximately 10,000 years. This dramatic increase in 
speed compared to all known classical algorithms is an experimental realization of 
quantum supremacy8–14 for this speci!c computational task, heralding a much-
anticipated computing paradigm.

In the early 1980s, Richard Feynman proposed that a quantum computer 
would be an effective tool with which to solve problems in physics 
and chemistry, given that it is exponentially costly to simulate large 
quantum systems with classical computers1. Realizing Feynman’s vision 
poses substantial experimental and theoretical challenges. First, can 
a quantum system be engineered to perform a computation in a large 
enough computational (Hilbert) space and with a low enough error 
rate to provide a quantum speedup? Second, can we formulate a prob-
lem that is hard for a classical computer but easy for a quantum com-
puter? By computing such a benchmark task on our superconducting 
qubit processor, we tackle both questions. Our experiment achieves 
quantum supremacy, a milestone on the path to full-scale quantum 
computing8–14.

In reaching this milestone, we show that quantum speedup is achiev-
able in a real-world system and is not precluded by any hidden physical 
laws. Quantum supremacy also heralds the era of noisy intermediate-
scale quantum (NISQ) technologies15. The benchmark task we demon-
strate has an immediate application in generating certifiable random 
numbers (S. Aaronson, manuscript in preparation); other initial uses 
for this new computational capability may include optimization16,17, 
machine learning18–21, materials science and chemistry22–24. However, 
realizing the full promise of quantum computing (using Shor’s algorithm 
for factoring, for example) still requires technical leaps to engineer 
fault-tolerant logical qubits25–29.

To achieve quantum supremacy, we made a number of techni-
cal advances which also pave the way towards error correction. We 
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The Extended Church-Turing Thesis is a foundational tenet 
in computer science, which states that a probabilistic Turing 
machine can efficiently simulate any process on a realistic 
physical device (1). In the 1980s, Richard Feynman observed 
that many-body quantum problems seemed difficult for 
classical computers due to the exponentially growing size of 
the quantum state Hilbert space. He proposed that a quan-
tum computer would be a natural solution. 

A number of quantum algorithms have since been de-
vised to efficiently solve problems believed to be classically 
hard, such as Shor’s factoring algorithm (2). Building a 
fault-tolerant quantum computer to run Shor’s algorithm, 
however, still requires long-term efforts. Quantum sampling 
algorithms (3–6), based on plausible computational com-
plexity arguments, were proposed for near-term demonstra-
tions of quantum computational speedup in solving certain 
well-defined tasks compared to current supercomputers. If 
the speedup appears overwhelming such that no classical 
computer can perform the same task in a reasonable 
amount of time and is unlikely overturned by classical algo-
rithmic or hardware improvements, it was called quantum 
computational advantage or quantum supremacy (7, 8). 
Here, we use the first term. 

A very recent experiment on a 53-qubit processor has 
generated a million noisy (~0.2% fidelity) samples in 200 s 
(8), while a supercomputer would take 10,000 years. It was 
soon argued that the classical algorithm can be improved to 
cost only a few days to compute all the 253 quantum proba-
bility amplitudes and generate ideal samples (9). Thus, if the 
competition were to generate a much larger size of samples, 
for example, ~1010, the quantum advantage would be re-
versed provided with sufficient storage. This sample-size-
dependence of the comparison—an analog to loopholes in 
Bell tests (10)—suggests that quantum advantage would re-
quire long-term competitions between faster classical simu-
lations and improved quantum devices. 

Boson sampling, proposed by Aaronson and Arkhipov 
(5), was the first feasible protocol for quantum computa-
tional advantage. In boson sampling and its variants (11, 12), 
non-classical light is injected into a linear optical network, 
and in the output highly random, photon-number- and 
path-entangled state is measured by single-photon detec-
tors. The dimension of the entangled state grows exponen-
tially with both the number of photons and the modes, 
which fast renders the storage of the quantum probability 
amplitudes impossible. The state-of-the-art classical simula-

Quantum computational advantage using photons 
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Quantum computers promises to perform certain tasks that are believed to be intractable to classical 
computers. Boson sampling is such a task and is considered as a strong candidate to demonstrate the 
quantum computational advantage. We perform Gaussian boson sampling by sending 50 indistinguishable 
single-mode squeezed states into a 100-mode ultralow-loss interferometer with full connectivity and 
random matrix—the whole optical setup is phase-locked—and sampling the output using 100 high-
efficiency single-photon detectors. The obtained samples are validated against plausible hypotheses 
exploiting thermal states, distinguishable photons, and uniform distribution. The photonic quantum 
computer generates up to 76 output photon clicks, which yields an output state-space dimension of 1030 
and a sampling rate that is ~1014 faster than using the state-of-the-art simulation strategy and 
supercomputers. 
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The building block of computation

18

Classical bit: 0 or 1

Quantum bit (qubit): |ψ⟩ = a0 |0⟩ + a1 |1⟩ = (a0
a1)

A quantum mechanical wave function 
that is a superposition of 0 and 1 

When we measure the state , we obtain either:
State , with a probability 
State , with a probability 

|ψ⟩
|0⟩ |a0 |2

|1⟩ |a1 |2

A classical bit can only be in one of two states

A quantum bit can be in an infinite number of states, but 
when we measure it it can only be in one of two states
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Multiple qubits

19

Quantum computations start to get interesting when we have multiple qubits

We represent a quantum state of multiple qubits using a tensor product:

Two qubits: |a⟩ = a0 |00⟩ + a1 |01⟩ + a2 |10⟩ + a3 |11⟩ =

a0
a1
a2
a3

where  denotes the tensor product|00⟩ = |0⟩ ⊗ |0⟩

 qubits:N |a⟩ = a0 |0...0⟩ + . . . + aK |1...1⟩ =
a0
⋮
aK
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Multiple qubits

20

Quantum computations start to get interesting when we have multiple qubits

We represent a quantum state of multiple qubits using a tensor product:

Example:
|01⟩ = |0⟩ ⊗ |1⟩ = (1

0) ⊗ (0
1) =

1 × 0
1 × 1
0 × 0
0 × 1

=
0
1
0
0

|ψab⟩ = |a⟩ ⊗ |b⟩ = (a0
a1) ⊗ (b0

b1) =

a0b0
a0b1
a1b0
a1b1
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Where does quantum advantage come from?

21

For  qubits, there are  amplitudesN 2N

e.g. |ψ⟩ = a1 |000⟩ + a2 |001⟩ + a3 |010⟩ + a4 |011⟩ + a5 |100⟩ + a6 |101⟩ + a7 |110⟩ + a8 |111⟩

|ψ⟩ =
2N

∑
i=1

ai |ψi⟩
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Where does quantum advantage come from?

22

For  qubits, there are  amplitudesN 2N

e.g. |ψ⟩ = a1 |000⟩ + a2 |001⟩ + a3 |010⟩ + a4 |011⟩ + a5 |100⟩ + a6 |101⟩ + a7 |110⟩ + a8 |111⟩

|ψ⟩ =
2N

∑
i=1

ai |ψi⟩

A quantum operation (gate) modifies all of these  amplitudes simultaneously!2N

|a⟩ =
2N

∑
i=1

ai |ψi⟩ → |b⟩ =
2N

∑
i=1

bi |ψi⟩
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Where does quantum advantage come from?

23

However: we cannot access the quantum amplitudes  directly!{ai}

For  qubits, there are  amplitudesN 2N

e.g. |ψ⟩ = a1 |000⟩ + a2 |001⟩ + a3 |010⟩ + a4 |011⟩ + a5 |100⟩ + a6 |101⟩ + a7 |110⟩ + a8 |111⟩

|ψ⟩ =
2N

∑
i=1

ai |ψi⟩

A quantum operation (gate) modifies all of these  amplitudes simultaneously!2N

This is the major challenge: How can we take advantage of the exponential efficiency of 
quantum operations when we only access one randomly sampled state at a time?

|a⟩ =
2N

∑
i=1

ai |ψi⟩ → |b⟩ =
2N

∑
i=1

bi |ψi⟩
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Quantum computing

Digital quantum computers Analog quantum computers

Universal Application-specific

In this program we will focus on digital, universal quantum computers

Quantum circuits: qubits + quantum logic gates
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Quantum Gates

25

Quantum states: column vectors

Quantum logic gates: unitary matrices U†U = I

Single-qubit gates:

Quantum computation 19

! "
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x xx
yyy

zzz

Figure 1.4. Visualization of the Hadamard gate on the Bloch sphere, acting on the input state (|0〉 + |1〉)/
√
2.

gate – there are many non-trivial single qubit gates. Two important ones which we shall
use later are the Z gate:

Z ≡
[

1 0
0 −1

]

, (1.13)

which leaves |0〉 unchanged, and flips the sign of |1〉 to give −|1〉, and the Hadamard
gate,

H ≡ 1√
2

[

1 1
1 −1

]

. (1.14)

This gate is sometimes described as being like a ‘square-root of ’ gate, in that it turns
a |0〉 into (|0〉 + |1〉)/

√
2 (first column of H), ‘halfway’ between |0〉 and |1〉, and turns

|1〉 into (|0〉 − |1〉)/
√
2 (second column of H), which is also ‘halfway’ between |0〉 and

|1〉. Note, however, that H2 is not a gate, as simple algebra shows that H2 = I, and
thus applying H twice to a state does nothing to it.
The Hadamard gate is one of the most useful quantum gates, and it is worth trying to

visualize its operation by considering the Bloch sphere picture. In this picture, it turns
out that single qubit gates correspond to rotations and reflections of the sphere. The
Hadamard operation is just a rotation of the sphere about the ŷ axis by 90◦, followed by
a rotation about the x̂ axis by 180◦, as illustrated in Figure 1.4. Some important single
qubit gates are shown in Figure 1.5, and contrasted with the classical case.

! !

Figure 1.5. Single bit (left) and qubit (right) logic gates.

There are infinitely many two by two unitary matrices, and thus infinitely many single

18 Introduction and overview

would obviously be a good candidate for a quantum analogue to the gate. However,
specifying the action of the gate on the states |0〉 and |1〉 does not tell us what happens to
superpositions of the states |0〉 and |1〉, without further knowledge about the properties
of quantum gates. In fact, the quantum gate acts linearly, that is, it takes the state

α|0〉 + β|1〉 (1.8)

to the corresponding state in which the role of |0〉 and |1〉 have been interchanged,

α|1〉 + β|0〉. (1.9)

Why the quantum gate acts linearly and not in some nonlinear fashion is a very
interesting question, and the answer is not at all obvious. It turns out that this linear
behavior is a general property of quantum mechanics, and very well motivated empirically;
moreover, nonlinear behavior can lead to apparent paradoxes such as time travel, faster-
than-light communication, and violations of the second laws of thermodynamics. We’ll
explore this point in more depth in later chapters, but for now we’ll just take it as given.
There is a convenient way of representing the quantum gate in matrix form,

which follows directly from the linearity of quantum gates. Suppose we define a matrix
X to represent the quantum gate as follows:

X ≡
[

0 1
1 0

]

. (1.10)

(The notation X for the quantum is used for historical reasons.) If the quantum
state α|0〉 + β|1〉 is written in a vector notation as

[

α
β

]

, (1.11)

with the top entry corresponding to the amplitude for |0〉 and the bottom entry the
amplitude for |1〉, then the corresponding output from the quantum gate is

X

[

α
β

]

=
[

β
α

]

. (1.12)

Notice that the action of the gate is to take the state |0〉 and replace it by the state
corresponding to the first column of the matrix X. Similarly, the state |1〉 is replaced by
the state corresponding to the second column of the matrix X .
So quantum gates on a single qubit can be described by two by two matrices. Are there

any constraints on what matrices may be used as quantum gates? It turns out that there
are. Recall that the normalization condition requires |α|2 + |β|2 = 1 for a quantum state
α|0〉 + β|1〉. This must also be true of the quantum state |ψ′〉 = α′|0〉 + β′|1〉 after the
gate has acted. It turns out that the appropriate condition on the matrix representing the
gate is that the matrix U describing the single qubit gate be unitary, that is U †U = I,
where U † is the adjoint of U (obtained by transposing and then complex conjugating
U ), and I is the two by two identity matrix. For example, for the gate it is easy to
verify that X†X = I.
Amazingly, this unitarity constraint is the only constraint on quantum gates. Any

unitary matrix specifies a valid quantum gate! The interesting implication is that in
contrast to the classical case, where only one non-trivial single bit gate exists – the
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Figure 1.4. Visualization of the Hadamard gate on the Bloch sphere, acting on the input state (|0〉 + |1〉)/
√
2.

gate – there are many non-trivial single qubit gates. Two important ones which we shall
use later are the Z gate:

Z ≡
[

1 0
0 −1

]

, (1.13)

which leaves |0〉 unchanged, and flips the sign of |1〉 to give −|1〉, and the Hadamard
gate,

H ≡ 1√
2

[

1 1
1 −1

]

. (1.14)

This gate is sometimes described as being like a ‘square-root of ’ gate, in that it turns
a |0〉 into (|0〉 + |1〉)/

√
2 (first column of H), ‘halfway’ between |0〉 and |1〉, and turns

|1〉 into (|0〉 − |1〉)/
√
2 (second column of H), which is also ‘halfway’ between |0〉 and

|1〉. Note, however, that H2 is not a gate, as simple algebra shows that H2 = I, and
thus applying H twice to a state does nothing to it.
The Hadamard gate is one of the most useful quantum gates, and it is worth trying to

visualize its operation by considering the Bloch sphere picture. In this picture, it turns
out that single qubit gates correspond to rotations and reflections of the sphere. The
Hadamard operation is just a rotation of the sphere about the ŷ axis by 90◦, followed by
a rotation about the x̂ axis by 180◦, as illustrated in Figure 1.4. Some important single
qubit gates are shown in Figure 1.5, and contrasted with the classical case.

! !

Figure 1.5. Single bit (left) and qubit (right) logic gates.

There are infinitely many two by two unitary matrices, and thus infinitely many single
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gate – there are many non-trivial single qubit gates. Two important ones which we shall
use later are the Z gate:

Z ≡
[

1 0
0 −1

]

, (1.13)

which leaves |0〉 unchanged, and flips the sign of |1〉 to give −|1〉, and the Hadamard
gate,

H ≡ 1√
2

[

1 1
1 −1

]

. (1.14)

This gate is sometimes described as being like a ‘square-root of ’ gate, in that it turns
a |0〉 into (|0〉 + |1〉)/

√
2 (first column of H), ‘halfway’ between |0〉 and |1〉, and turns

|1〉 into (|0〉 − |1〉)/
√
2 (second column of H), which is also ‘halfway’ between |0〉 and

|1〉. Note, however, that H2 is not a gate, as simple algebra shows that H2 = I, and
thus applying H twice to a state does nothing to it.
The Hadamard gate is one of the most useful quantum gates, and it is worth trying to

visualize its operation by considering the Bloch sphere picture. In this picture, it turns
out that single qubit gates correspond to rotations and reflections of the sphere. The
Hadamard operation is just a rotation of the sphere about the ŷ axis by 90◦, followed by
a rotation about the x̂ axis by 180◦, as illustrated in Figure 1.4. Some important single
qubit gates are shown in Figure 1.5, and contrasted with the classical case.
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Figure 1.5. Single bit (left) and qubit (right) logic gates.

There are infinitely many two by two unitary matrices, and thus infinitely many single

Multi-qubit gates: Any quantum gate can be composed from CNOT and single-qubit gates

|a⟩ = a0 |0⟩ + a1 |1⟩ = (a0
a1)
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Definition: if first qubit is 1, then flip the state of the second qubit

|00⟩ =
1
0
0
0

→
1
0
0
0

|10⟩ =
0
0
1
0

→
0
0
0
1

|01⟩ =
0
1
0
0

→
0
1
0
0

|11⟩ =
0
0
0
1

→
0
0
1
0
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Figure 1.6. On the left are some standard single and multiple bit gates, while on the right is the prototypical
multiple qubit gate, the controlled- . The matrix representation of the controlled- , UCN , is written with
respect to the amplitudes for |00〉, |01〉, |10〉, and |11〉, in that order.

qubit. The action of the gate may be described as follows. If the control qubit is set to
0, then the target qubit is left alone. If the control qubit is set to 1, then the target qubit
is flipped. In equations:

|00〉 → |00〉; |01〉 → |01〉; |10〉 → |11〉; |11〉 → |10〉. (1.18)

Another way of describing the is as a generalization of the classical gate, since
the action of the gate may be summarized as |A, B〉 → |A, B ⊕A〉, where ⊕ is addition
modulo two, which is exactly what the gate does. That is, the control qubit and the
target qubit are ed and stored in the target qubit.
Yet another way of describing the action of the is to give a matrix represen-

tation, as shown in the bottom right of Figure 1.6. You can easily verify that the first
column of UCN describes the transformation that occurs to |00〉, and similarly for the
other computational basis states, |01〉, |10〉, and |11〉. As for the single qubit case, the
requirement that probability be conserved is expressed in the fact that UCN is a unitary
matrix, that is, U †

CNUCN = I.
We noticed that the can be regarded as a type of generalized- gate. Can

other classical gates such as the or the regular gate be understood as unitary
gates in a sense similar to the way the quantum gate represents the classical
gate? It turns out that this is not possible. The reason is because the and gates
are essentially irreversible or non-invertible. For example, given the output A⊕B from
an gate, it is not possible to determine what the inputs A and B were; there is an
irretrievable loss of information associated with the irreversible action of the gate.
On the other hand, unitary quantum gates are always invertible, since the inverse of a
unitary matrix is also a unitary matrix, and thus a quantum gate can always be inverted
by another quantum gate. Understanding how to do classical logic in this reversible or
invertible sense will be a crucial step in understanding how to harness the power of
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in the circuit represents a wire in the quantum circuit. This wire does not necessarily
correspond to a physical wire; it may correspond instead to the passage of time, or perhaps
to a physical particle such as a photon – a particle of light – moving from one location
to another through space. It is conventional to assume that the state input to the circuit
is a computational basis state, usually the state consisting of all |0〉s. This rule is broken
frequently in the literature on quantum computation and quantum information, but it is
considered polite to inform the reader when this is the case.
The circuit in Figure 1.7 accomplishes a simple but useful task – it swaps the states

of the two qubits. To see that this circuit accomplishes the swap operation, note that the
sequence of gates has the following sequence of effects on a computational basis state
|a, b〉,

|a, b〉 −→ |a, a ⊕ b〉
−→ |a ⊕ (a ⊕ b), a ⊕ b〉 = |b, a ⊕ b〉
−→ |b, (a ⊕ b)⊕ b〉 = |b, a〉 , (1.20)

where all additions are done modulo 2. The effect of the circuit, therefore, is to inter-
change the state of the two qubits.

Figure 1.7. Circuit swapping two qubits, and an equivalent schematic symbol notation for this common and useful
circuit.

There are a few features allowed in classical circuits that are not usually present in
quantum circuits. First of all, we don’t allow ‘loops’, that is, feedback from one part of the
quantum circuit to another; we say the circuit is acyclic. Second, classical circuits allow
wires to be ‘joined’ together, an operation known as , with the resulting single wire
containing the bitwise of the inputs. Obviously this operation is not reversible and
therefore not unitary, so we don’t allow in our quantum circuits. Third, the inverse
operation, , whereby several copies of a bit are produced is also not allowed in
quantum circuits. In fact, it turns out that quantum mechanics forbids the copying of a
qubit, making the operation impossible! We’ll see an example of this in the next
section when we attempt to design a circuit to copy a qubit.
As we proceed we’ll introduce new quantum gates as needed. It’s convenient to in-

troduce another convention about quantum circuits at this point. This convention is
illustrated in Figure 1.8. Suppose U is any unitary matrix acting on some number n of
qubits, so U can be regarded as a quantum gate on those qubits. Then we can define a
controlled-U gate which is a natural extension of the controlled- gate. Such a gate
has a single control qubit, indicated by the line with the black dot, and n target qubits,
indicated by the boxed U . If the control qubit is set to 0 then nothing happens to the
target qubits. If the control qubit is set to 1 then the gate U is applied to the target qubits.
The prototypical example of the controlled-U gate is the controlled- gate, which is
a controlled-U gate with U = X , as illustrated in Figure 1.9.
Another important operation is measurement, which we represent by a ‘meter’ symbol,

|00⟩ =
1
0
0
0

→
1
0
0
0

|10⟩ =
0
0
1
0

→
0
0
0
1

|01⟩ =
0
1
0
0

→
0
1
0
0

|11⟩ =
0
0
0
1

→
0
0
1
0

How do we construct the matrix 
representation of the gate?

Definition: if first qubit is 1, then flip the state of the second qubit
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Figure 1.6. On the left are some standard single and multiple bit gates, while on the right is the prototypical
multiple qubit gate, the controlled- . The matrix representation of the controlled- , UCN , is written with
respect to the amplitudes for |00〉, |01〉, |10〉, and |11〉, in that order.

qubit. The action of the gate may be described as follows. If the control qubit is set to
0, then the target qubit is left alone. If the control qubit is set to 1, then the target qubit
is flipped. In equations:

|00〉 → |00〉; |01〉 → |01〉; |10〉 → |11〉; |11〉 → |10〉. (1.18)

Another way of describing the is as a generalization of the classical gate, since
the action of the gate may be summarized as |A, B〉 → |A, B ⊕A〉, where ⊕ is addition
modulo two, which is exactly what the gate does. That is, the control qubit and the
target qubit are ed and stored in the target qubit.
Yet another way of describing the action of the is to give a matrix represen-

tation, as shown in the bottom right of Figure 1.6. You can easily verify that the first
column of UCN describes the transformation that occurs to |00〉, and similarly for the
other computational basis states, |01〉, |10〉, and |11〉. As for the single qubit case, the
requirement that probability be conserved is expressed in the fact that UCN is a unitary
matrix, that is, U †

CNUCN = I.
We noticed that the can be regarded as a type of generalized- gate. Can

other classical gates such as the or the regular gate be understood as unitary
gates in a sense similar to the way the quantum gate represents the classical
gate? It turns out that this is not possible. The reason is because the and gates
are essentially irreversible or non-invertible. For example, given the output A⊕B from
an gate, it is not possible to determine what the inputs A and B were; there is an
irretrievable loss of information associated with the irreversible action of the gate.
On the other hand, unitary quantum gates are always invertible, since the inverse of a
unitary matrix is also a unitary matrix, and thus a quantum gate can always be inverted
by another quantum gate. Understanding how to do classical logic in this reversible or
invertible sense will be a crucial step in understanding how to harness the power of
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in the circuit represents a wire in the quantum circuit. This wire does not necessarily
correspond to a physical wire; it may correspond instead to the passage of time, or perhaps
to a physical particle such as a photon – a particle of light – moving from one location
to another through space. It is conventional to assume that the state input to the circuit
is a computational basis state, usually the state consisting of all |0〉s. This rule is broken
frequently in the literature on quantum computation and quantum information, but it is
considered polite to inform the reader when this is the case.
The circuit in Figure 1.7 accomplishes a simple but useful task – it swaps the states

of the two qubits. To see that this circuit accomplishes the swap operation, note that the
sequence of gates has the following sequence of effects on a computational basis state
|a, b〉,

|a, b〉 −→ |a, a ⊕ b〉
−→ |a ⊕ (a ⊕ b), a ⊕ b〉 = |b, a ⊕ b〉
−→ |b, (a ⊕ b)⊕ b〉 = |b, a〉 , (1.20)

where all additions are done modulo 2. The effect of the circuit, therefore, is to inter-
change the state of the two qubits.

Figure 1.7. Circuit swapping two qubits, and an equivalent schematic symbol notation for this common and useful
circuit.

There are a few features allowed in classical circuits that are not usually present in
quantum circuits. First of all, we don’t allow ‘loops’, that is, feedback from one part of the
quantum circuit to another; we say the circuit is acyclic. Second, classical circuits allow
wires to be ‘joined’ together, an operation known as , with the resulting single wire
containing the bitwise of the inputs. Obviously this operation is not reversible and
therefore not unitary, so we don’t allow in our quantum circuits. Third, the inverse
operation, , whereby several copies of a bit are produced is also not allowed in
quantum circuits. In fact, it turns out that quantum mechanics forbids the copying of a
qubit, making the operation impossible! We’ll see an example of this in the next
section when we attempt to design a circuit to copy a qubit.
As we proceed we’ll introduce new quantum gates as needed. It’s convenient to in-

troduce another convention about quantum circuits at this point. This convention is
illustrated in Figure 1.8. Suppose U is any unitary matrix acting on some number n of
qubits, so U can be regarded as a quantum gate on those qubits. Then we can define a
controlled-U gate which is a natural extension of the controlled- gate. Such a gate
has a single control qubit, indicated by the line with the black dot, and n target qubits,
indicated by the boxed U . If the control qubit is set to 0 then nothing happens to the
target qubits. If the control qubit is set to 1 then the gate U is applied to the target qubits.
The prototypical example of the controlled-U gate is the controlled- gate, which is
a controlled-U gate with U = X , as illustrated in Figure 1.9.
Another important operation is measurement, which we represent by a ‘meter’ symbol,

|00⟩ =
1
0
0
0

→
1
0
0
0

|10⟩ =
0
0
1
0

→
0
0
0
1

|01⟩ =
0
1
0
0

→
0
1
0
0

|11⟩ =
0
0
0
1

→
0
0
1
0 The  column determines how 

the  basis state transforms:
ith

ith

|00⟩ → |00⟩

How do we construct the matrix 
representation of the gate?

Definition: if first qubit is 1, then flip the state of the second qubit
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Figure 1.6. On the left are some standard single and multiple bit gates, while on the right is the prototypical
multiple qubit gate, the controlled- . The matrix representation of the controlled- , UCN , is written with
respect to the amplitudes for |00〉, |01〉, |10〉, and |11〉, in that order.

qubit. The action of the gate may be described as follows. If the control qubit is set to
0, then the target qubit is left alone. If the control qubit is set to 1, then the target qubit
is flipped. In equations:

|00〉 → |00〉; |01〉 → |01〉; |10〉 → |11〉; |11〉 → |10〉. (1.18)

Another way of describing the is as a generalization of the classical gate, since
the action of the gate may be summarized as |A, B〉 → |A, B ⊕A〉, where ⊕ is addition
modulo two, which is exactly what the gate does. That is, the control qubit and the
target qubit are ed and stored in the target qubit.
Yet another way of describing the action of the is to give a matrix represen-

tation, as shown in the bottom right of Figure 1.6. You can easily verify that the first
column of UCN describes the transformation that occurs to |00〉, and similarly for the
other computational basis states, |01〉, |10〉, and |11〉. As for the single qubit case, the
requirement that probability be conserved is expressed in the fact that UCN is a unitary
matrix, that is, U †

CNUCN = I.
We noticed that the can be regarded as a type of generalized- gate. Can

other classical gates such as the or the regular gate be understood as unitary
gates in a sense similar to the way the quantum gate represents the classical
gate? It turns out that this is not possible. The reason is because the and gates
are essentially irreversible or non-invertible. For example, given the output A⊕B from
an gate, it is not possible to determine what the inputs A and B were; there is an
irretrievable loss of information associated with the irreversible action of the gate.
On the other hand, unitary quantum gates are always invertible, since the inverse of a
unitary matrix is also a unitary matrix, and thus a quantum gate can always be inverted
by another quantum gate. Understanding how to do classical logic in this reversible or
invertible sense will be a crucial step in understanding how to harness the power of
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in the circuit represents a wire in the quantum circuit. This wire does not necessarily
correspond to a physical wire; it may correspond instead to the passage of time, or perhaps
to a physical particle such as a photon – a particle of light – moving from one location
to another through space. It is conventional to assume that the state input to the circuit
is a computational basis state, usually the state consisting of all |0〉s. This rule is broken
frequently in the literature on quantum computation and quantum information, but it is
considered polite to inform the reader when this is the case.
The circuit in Figure 1.7 accomplishes a simple but useful task – it swaps the states

of the two qubits. To see that this circuit accomplishes the swap operation, note that the
sequence of gates has the following sequence of effects on a computational basis state
|a, b〉,

|a, b〉 −→ |a, a ⊕ b〉
−→ |a ⊕ (a ⊕ b), a ⊕ b〉 = |b, a ⊕ b〉
−→ |b, (a ⊕ b)⊕ b〉 = |b, a〉 , (1.20)

where all additions are done modulo 2. The effect of the circuit, therefore, is to inter-
change the state of the two qubits.

Figure 1.7. Circuit swapping two qubits, and an equivalent schematic symbol notation for this common and useful
circuit.

There are a few features allowed in classical circuits that are not usually present in
quantum circuits. First of all, we don’t allow ‘loops’, that is, feedback from one part of the
quantum circuit to another; we say the circuit is acyclic. Second, classical circuits allow
wires to be ‘joined’ together, an operation known as , with the resulting single wire
containing the bitwise of the inputs. Obviously this operation is not reversible and
therefore not unitary, so we don’t allow in our quantum circuits. Third, the inverse
operation, , whereby several copies of a bit are produced is also not allowed in
quantum circuits. In fact, it turns out that quantum mechanics forbids the copying of a
qubit, making the operation impossible! We’ll see an example of this in the next
section when we attempt to design a circuit to copy a qubit.
As we proceed we’ll introduce new quantum gates as needed. It’s convenient to in-

troduce another convention about quantum circuits at this point. This convention is
illustrated in Figure 1.8. Suppose U is any unitary matrix acting on some number n of
qubits, so U can be regarded as a quantum gate on those qubits. Then we can define a
controlled-U gate which is a natural extension of the controlled- gate. Such a gate
has a single control qubit, indicated by the line with the black dot, and n target qubits,
indicated by the boxed U . If the control qubit is set to 0 then nothing happens to the
target qubits. If the control qubit is set to 1 then the gate U is applied to the target qubits.
The prototypical example of the controlled-U gate is the controlled- gate, which is
a controlled-U gate with U = X , as illustrated in Figure 1.9.
Another important operation is measurement, which we represent by a ‘meter’ symbol,

|00⟩ =
1
0
0
0

→
1
0
0
0

|10⟩ =
0
0
1
0

→
0
0
0
1

|01⟩ =
0
1
0
0

→
0
1
0
0

|11⟩ =
0
0
0
1

→
0
0
1
0 The  column determines how 

the  basis state transforms:
ith

ith

|01⟩ → |01⟩

How do we construct the matrix 
representation of the gate?

Definition: if first qubit is 1, then flip the state of the second qubit
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Figure 1.6. On the left are some standard single and multiple bit gates, while on the right is the prototypical
multiple qubit gate, the controlled- . The matrix representation of the controlled- , UCN , is written with
respect to the amplitudes for |00〉, |01〉, |10〉, and |11〉, in that order.

qubit. The action of the gate may be described as follows. If the control qubit is set to
0, then the target qubit is left alone. If the control qubit is set to 1, then the target qubit
is flipped. In equations:

|00〉 → |00〉; |01〉 → |01〉; |10〉 → |11〉; |11〉 → |10〉. (1.18)

Another way of describing the is as a generalization of the classical gate, since
the action of the gate may be summarized as |A, B〉 → |A, B ⊕A〉, where ⊕ is addition
modulo two, which is exactly what the gate does. That is, the control qubit and the
target qubit are ed and stored in the target qubit.
Yet another way of describing the action of the is to give a matrix represen-

tation, as shown in the bottom right of Figure 1.6. You can easily verify that the first
column of UCN describes the transformation that occurs to |00〉, and similarly for the
other computational basis states, |01〉, |10〉, and |11〉. As for the single qubit case, the
requirement that probability be conserved is expressed in the fact that UCN is a unitary
matrix, that is, U †

CNUCN = I.
We noticed that the can be regarded as a type of generalized- gate. Can

other classical gates such as the or the regular gate be understood as unitary
gates in a sense similar to the way the quantum gate represents the classical
gate? It turns out that this is not possible. The reason is because the and gates
are essentially irreversible or non-invertible. For example, given the output A⊕B from
an gate, it is not possible to determine what the inputs A and B were; there is an
irretrievable loss of information associated with the irreversible action of the gate.
On the other hand, unitary quantum gates are always invertible, since the inverse of a
unitary matrix is also a unitary matrix, and thus a quantum gate can always be inverted
by another quantum gate. Understanding how to do classical logic in this reversible or
invertible sense will be a crucial step in understanding how to harness the power of
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in the circuit represents a wire in the quantum circuit. This wire does not necessarily
correspond to a physical wire; it may correspond instead to the passage of time, or perhaps
to a physical particle such as a photon – a particle of light – moving from one location
to another through space. It is conventional to assume that the state input to the circuit
is a computational basis state, usually the state consisting of all |0〉s. This rule is broken
frequently in the literature on quantum computation and quantum information, but it is
considered polite to inform the reader when this is the case.
The circuit in Figure 1.7 accomplishes a simple but useful task – it swaps the states

of the two qubits. To see that this circuit accomplishes the swap operation, note that the
sequence of gates has the following sequence of effects on a computational basis state
|a, b〉,

|a, b〉 −→ |a, a ⊕ b〉
−→ |a ⊕ (a ⊕ b), a ⊕ b〉 = |b, a ⊕ b〉
−→ |b, (a ⊕ b)⊕ b〉 = |b, a〉 , (1.20)

where all additions are done modulo 2. The effect of the circuit, therefore, is to inter-
change the state of the two qubits.

Figure 1.7. Circuit swapping two qubits, and an equivalent schematic symbol notation for this common and useful
circuit.

There are a few features allowed in classical circuits that are not usually present in
quantum circuits. First of all, we don’t allow ‘loops’, that is, feedback from one part of the
quantum circuit to another; we say the circuit is acyclic. Second, classical circuits allow
wires to be ‘joined’ together, an operation known as , with the resulting single wire
containing the bitwise of the inputs. Obviously this operation is not reversible and
therefore not unitary, so we don’t allow in our quantum circuits. Third, the inverse
operation, , whereby several copies of a bit are produced is also not allowed in
quantum circuits. In fact, it turns out that quantum mechanics forbids the copying of a
qubit, making the operation impossible! We’ll see an example of this in the next
section when we attempt to design a circuit to copy a qubit.
As we proceed we’ll introduce new quantum gates as needed. It’s convenient to in-

troduce another convention about quantum circuits at this point. This convention is
illustrated in Figure 1.8. Suppose U is any unitary matrix acting on some number n of
qubits, so U can be regarded as a quantum gate on those qubits. Then we can define a
controlled-U gate which is a natural extension of the controlled- gate. Such a gate
has a single control qubit, indicated by the line with the black dot, and n target qubits,
indicated by the boxed U . If the control qubit is set to 0 then nothing happens to the
target qubits. If the control qubit is set to 1 then the gate U is applied to the target qubits.
The prototypical example of the controlled-U gate is the controlled- gate, which is
a controlled-U gate with U = X , as illustrated in Figure 1.9.
Another important operation is measurement, which we represent by a ‘meter’ symbol,

|00⟩ =
1
0
0
0

→
1
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0
0

|10⟩ =
0
0
1
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0
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the  basis state transforms:
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|10⟩ → |11⟩

How do we construct the matrix 
representation of the gate?

Definition: if first qubit is 1, then flip the state of the second qubit
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Figure 1.6. On the left are some standard single and multiple bit gates, while on the right is the prototypical
multiple qubit gate, the controlled- . The matrix representation of the controlled- , UCN , is written with
respect to the amplitudes for |00〉, |01〉, |10〉, and |11〉, in that order.

qubit. The action of the gate may be described as follows. If the control qubit is set to
0, then the target qubit is left alone. If the control qubit is set to 1, then the target qubit
is flipped. In equations:

|00〉 → |00〉; |01〉 → |01〉; |10〉 → |11〉; |11〉 → |10〉. (1.18)

Another way of describing the is as a generalization of the classical gate, since
the action of the gate may be summarized as |A, B〉 → |A, B ⊕A〉, where ⊕ is addition
modulo two, which is exactly what the gate does. That is, the control qubit and the
target qubit are ed and stored in the target qubit.
Yet another way of describing the action of the is to give a matrix represen-

tation, as shown in the bottom right of Figure 1.6. You can easily verify that the first
column of UCN describes the transformation that occurs to |00〉, and similarly for the
other computational basis states, |01〉, |10〉, and |11〉. As for the single qubit case, the
requirement that probability be conserved is expressed in the fact that UCN is a unitary
matrix, that is, U †

CNUCN = I.
We noticed that the can be regarded as a type of generalized- gate. Can

other classical gates such as the or the regular gate be understood as unitary
gates in a sense similar to the way the quantum gate represents the classical
gate? It turns out that this is not possible. The reason is because the and gates
are essentially irreversible or non-invertible. For example, given the output A⊕B from
an gate, it is not possible to determine what the inputs A and B were; there is an
irretrievable loss of information associated with the irreversible action of the gate.
On the other hand, unitary quantum gates are always invertible, since the inverse of a
unitary matrix is also a unitary matrix, and thus a quantum gate can always be inverted
by another quantum gate. Understanding how to do classical logic in this reversible or
invertible sense will be a crucial step in understanding how to harness the power of
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in the circuit represents a wire in the quantum circuit. This wire does not necessarily
correspond to a physical wire; it may correspond instead to the passage of time, or perhaps
to a physical particle such as a photon – a particle of light – moving from one location
to another through space. It is conventional to assume that the state input to the circuit
is a computational basis state, usually the state consisting of all |0〉s. This rule is broken
frequently in the literature on quantum computation and quantum information, but it is
considered polite to inform the reader when this is the case.
The circuit in Figure 1.7 accomplishes a simple but useful task – it swaps the states

of the two qubits. To see that this circuit accomplishes the swap operation, note that the
sequence of gates has the following sequence of effects on a computational basis state
|a, b〉,

|a, b〉 −→ |a, a ⊕ b〉
−→ |a ⊕ (a ⊕ b), a ⊕ b〉 = |b, a ⊕ b〉
−→ |b, (a ⊕ b)⊕ b〉 = |b, a〉 , (1.20)

where all additions are done modulo 2. The effect of the circuit, therefore, is to inter-
change the state of the two qubits.

Figure 1.7. Circuit swapping two qubits, and an equivalent schematic symbol notation for this common and useful
circuit.

There are a few features allowed in classical circuits that are not usually present in
quantum circuits. First of all, we don’t allow ‘loops’, that is, feedback from one part of the
quantum circuit to another; we say the circuit is acyclic. Second, classical circuits allow
wires to be ‘joined’ together, an operation known as , with the resulting single wire
containing the bitwise of the inputs. Obviously this operation is not reversible and
therefore not unitary, so we don’t allow in our quantum circuits. Third, the inverse
operation, , whereby several copies of a bit are produced is also not allowed in
quantum circuits. In fact, it turns out that quantum mechanics forbids the copying of a
qubit, making the operation impossible! We’ll see an example of this in the next
section when we attempt to design a circuit to copy a qubit.
As we proceed we’ll introduce new quantum gates as needed. It’s convenient to in-

troduce another convention about quantum circuits at this point. This convention is
illustrated in Figure 1.8. Suppose U is any unitary matrix acting on some number n of
qubits, so U can be regarded as a quantum gate on those qubits. Then we can define a
controlled-U gate which is a natural extension of the controlled- gate. Such a gate
has a single control qubit, indicated by the line with the black dot, and n target qubits,
indicated by the boxed U . If the control qubit is set to 0 then nothing happens to the
target qubits. If the control qubit is set to 1 then the gate U is applied to the target qubits.
The prototypical example of the controlled-U gate is the controlled- gate, which is
a controlled-U gate with U = X , as illustrated in Figure 1.9.
Another important operation is measurement, which we represent by a ‘meter’ symbol,

|00⟩ =
1
0
0
0

→
1
0
0
0

|10⟩ =
0
0
1
0

→
0
0
0
1

|01⟩ =
0
1
0
0

→
0
1
0
0

|11⟩ =
0
0
0
1

→
0
0
1
0 The  column determines how 

the  basis state transforms:
ith

ith

|11⟩ → |10⟩

How do we construct the matrix 
representation of the gate?

Definition: if first qubit is 1, then flip the state of the second qubit



James Mulligan REYES Nuclear Mentoring Program: Quantum Computing, Part 1 Aug 9 2022

Quantum circuits

32

Nothing more than (clever) unitary matrix multiplications!
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in the circuit represents a wire in the quantum circuit. This wire does not necessarily
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to a physical particle such as a photon – a particle of light – moving from one location
to another through space. It is conventional to assume that the state input to the circuit
is a computational basis state, usually the state consisting of all |0〉s. This rule is broken
frequently in the literature on quantum computation and quantum information, but it is
considered polite to inform the reader when this is the case.
The circuit in Figure 1.7 accomplishes a simple but useful task – it swaps the states

of the two qubits. To see that this circuit accomplishes the swap operation, note that the
sequence of gates has the following sequence of effects on a computational basis state
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−→ |a ⊕ (a ⊕ b), a ⊕ b〉 = |b, a ⊕ b〉
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where all additions are done modulo 2. The effect of the circuit, therefore, is to inter-
change the state of the two qubits.

Figure 1.7. Circuit swapping two qubits, and an equivalent schematic symbol notation for this common and useful
circuit.

There are a few features allowed in classical circuits that are not usually present in
quantum circuits. First of all, we don’t allow ‘loops’, that is, feedback from one part of the
quantum circuit to another; we say the circuit is acyclic. Second, classical circuits allow
wires to be ‘joined’ together, an operation known as , with the resulting single wire
containing the bitwise of the inputs. Obviously this operation is not reversible and
therefore not unitary, so we don’t allow in our quantum circuits. Third, the inverse
operation, , whereby several copies of a bit are produced is also not allowed in
quantum circuits. In fact, it turns out that quantum mechanics forbids the copying of a
qubit, making the operation impossible! We’ll see an example of this in the next
section when we attempt to design a circuit to copy a qubit.
As we proceed we’ll introduce new quantum gates as needed. It’s convenient to in-

troduce another convention about quantum circuits at this point. This convention is
illustrated in Figure 1.8. Suppose U is any unitary matrix acting on some number n of
qubits, so U can be regarded as a quantum gate on those qubits. Then we can define a
controlled-U gate which is a natural extension of the controlled- gate. Such a gate
has a single control qubit, indicated by the line with the black dot, and n target qubits,
indicated by the boxed U . If the control qubit is set to 0 then nothing happens to the
target qubits. If the control qubit is set to 1 then the gate U is applied to the target qubits.
The prototypical example of the controlled-U gate is the controlled- gate, which is
a controlled-U gate with U = X , as illustrated in Figure 1.9.
Another important operation is measurement, which we represent by a ‘meter’ symbol,

|a⟩

|a⟩|b⟩

|b⟩
Example: SWAP circuit

Quantum computation 21

!
!
"

! !"# "

!
"

! $!% "

!
"

! &"# "
!
"

! "# "

!
"

!! !$!% "

! !"' !

"#$ "%$

"&$ "'$

"($

")$

Figure 1.6. On the left are some standard single and multiple bit gates, while on the right is the prototypical
multiple qubit gate, the controlled- . The matrix representation of the controlled- , UCN , is written with
respect to the amplitudes for |00〉, |01〉, |10〉, and |11〉, in that order.

qubit. The action of the gate may be described as follows. If the control qubit is set to
0, then the target qubit is left alone. If the control qubit is set to 1, then the target qubit
is flipped. In equations:

|00〉 → |00〉; |01〉 → |01〉; |10〉 → |11〉; |11〉 → |10〉. (1.18)

Another way of describing the is as a generalization of the classical gate, since
the action of the gate may be summarized as |A, B〉 → |A, B ⊕A〉, where ⊕ is addition
modulo two, which is exactly what the gate does. That is, the control qubit and the
target qubit are ed and stored in the target qubit.
Yet another way of describing the action of the is to give a matrix represen-

tation, as shown in the bottom right of Figure 1.6. You can easily verify that the first
column of UCN describes the transformation that occurs to |00〉, and similarly for the
other computational basis states, |01〉, |10〉, and |11〉. As for the single qubit case, the
requirement that probability be conserved is expressed in the fact that UCN is a unitary
matrix, that is, U †

CNUCN = I.
We noticed that the can be regarded as a type of generalized- gate. Can

other classical gates such as the or the regular gate be understood as unitary
gates in a sense similar to the way the quantum gate represents the classical
gate? It turns out that this is not possible. The reason is because the and gates
are essentially irreversible or non-invertible. For example, given the output A⊕B from
an gate, it is not possible to determine what the inputs A and B were; there is an
irretrievable loss of information associated with the irreversible action of the gate.
On the other hand, unitary quantum gates are always invertible, since the inverse of a
unitary matrix is also a unitary matrix, and thus a quantum gate can always be inverted
by another quantum gate. Understanding how to do classical logic in this reversible or
invertible sense will be a crucial step in understanding how to harness the power of
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|a, b〉,

|a, b〉 −→ |a, a ⊕ b〉
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where all additions are done modulo 2. The effect of the circuit, therefore, is to inter-
change the state of the two qubits.

Figure 1.7. Circuit swapping two qubits, and an equivalent schematic symbol notation for this common and useful
circuit.

There are a few features allowed in classical circuits that are not usually present in
quantum circuits. First of all, we don’t allow ‘loops’, that is, feedback from one part of the
quantum circuit to another; we say the circuit is acyclic. Second, classical circuits allow
wires to be ‘joined’ together, an operation known as , with the resulting single wire
containing the bitwise of the inputs. Obviously this operation is not reversible and
therefore not unitary, so we don’t allow in our quantum circuits. Third, the inverse
operation, , whereby several copies of a bit are produced is also not allowed in
quantum circuits. In fact, it turns out that quantum mechanics forbids the copying of a
qubit, making the operation impossible! We’ll see an example of this in the next
section when we attempt to design a circuit to copy a qubit.
As we proceed we’ll introduce new quantum gates as needed. It’s convenient to in-

troduce another convention about quantum circuits at this point. This convention is
illustrated in Figure 1.8. Suppose U is any unitary matrix acting on some number n of
qubits, so U can be regarded as a quantum gate on those qubits. Then we can define a
controlled-U gate which is a natural extension of the controlled- gate. Such a gate
has a single control qubit, indicated by the line with the black dot, and n target qubits,
indicated by the boxed U . If the control qubit is set to 0 then nothing happens to the
target qubits. If the control qubit is set to 1 then the gate U is applied to the target qubits.
The prototypical example of the controlled-U gate is the controlled- gate, which is
a controlled-U gate with U = X , as illustrated in Figure 1.9.
Another important operation is measurement, which we represent by a ‘meter’ symbol,

CNOT gate

SWAP ( |a⟩ ⊗ |b⟩) = CNOT0,1 × CNOT1,0 × CNOT0,1 × (a0
a1) ⊗ (b0

b1)

=
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

a0b0
a0b1
a1b0
a1b1

=

b0a0
b0a1
b1a0
b1a1

= |b⟩ ⊗ |a⟩
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Outline

1. What is a quantum computer?

2. What are potential uses of quantum computing?

3. What are the challenges to achieve quantum advantage?
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Future applications of quantum computers
Simulation of quantum field theory

Cryptography
Molecular dynamics

…

Quantum machine learning

Introduction Equation of state Color screening Summary
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Shor’s factoring algorithm Grover’s search algorithm

Exponential speedup compared 
to classical algorithms

Polynomial speedup compared 
to classical algorithms

Task: Find prime factors of an integer Task: Find marked entry in an unordered list

% ( (N)) % (N)vs.% ((log N)2 . . . ) % (e1.9(log N)1/3...)vs.

And more…
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Quantum simulation Feynman `81
Lloyd `96 

Task: Given the Hamiltonian of a quantum mechanical system, 
simulate its dynamical evolution

Quantum chemistry, material design, nuclear dynamics, …

H |ψ(t)⟩ = iℏ d
dt

|ψ(t)⟩
That is, solve the time-dependent Schrödinger equation:

The solution is just a unitary evolution!
|ψ(t)⟩ = UH |ψ(0)⟩ UH = e−iHt/ℏwhere

It is exponentially expensive to simulate an -body quantum system on a classical 
computer:   amplitudes! 

Cannot simulate more than  particles

N
2N

%(10 − 100)
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Quantum simulation Feynman `81
Lloyd `96 

A quantum computer can naturally simulate a quantum system 

(1) Initial state preparation

(2) Time evolution

(3) Measurement

|ψ(t)⟩

|0⋯0⟩ → |ψ(0)⟩

UH(t)|ψ(0)⟩

Need efficient encoding of  into quantum gates, 
e.g. local interactions

UH



James Mulligan REYES Nuclear Mentoring Program: Quantum Computing, Part 1 Aug 9 2022 38

Outline

1. What is a quantum computer?

2. What are potential uses of quantum computing?

3. What are the challenges to achieve quantum advantage?
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DiVincenzo Criteria

39

A quantum computer must satisfy the following:

Scalable physical system with well-defined qubits
Ability to initialize qubits
Ability to measure qubits
Universal set of quantum gates
Qubit decoherence times much longer than gate latency

A variety of different physical systems are being explored, each with strengths

Superconducting circuits
Trapped ions
Rydberg atoms

Photonics
Topological materials
…
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Quantum devices
Superconducting circuits Trapped ions

Rapid advances in qubit coherence times and quantum gates
State-of-the-art:  qubits,  two-qubit operations% (10 − 100) % (100)

Qubit control: overview

qubit

Zlatko Minev — Qiskit Global Summer School 2020   (37)
Qubits: Nonlinear quantum oscillator
Gates: Coupled microwave pulses

The Transmon qubit: restricting Hilbert space

En
er

gy

Φ/!0
0

0

Restrict to qubit subspace of |0> and |1>

Zlatko Minev — Qiskit Global Summer School 2020   (27)

A first approximation

Magnetic flux

Energy

Harmonic oscillator

Zlatko Minev — Qiskit Global Summer School 2020   (7/104)

Qubits: Atomic energy levels (optical/hyperfine)
Gates: Coupled laser pulses
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Noisy quantum devices
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Decoherence Gate noiseFew qubits
The quantum state of a qubit is 
stable only for a limited timeCurrent devices are limited to 

 qubits%(10) − %(100)

Need more qubits to achieve 
quantum advantage

Single- and two-qubit gate 
operations are imperfect

Need longer coherence times to 
increase the “gate depth” of circuits

Need smaller gate noise to 
perform quantum error correction

: decay time T1 |1⟩ → |0⟩
Ufaulty = A Uideal

ρ → (1 − λ)ρ + λI

: dephasing timeT2

|1⟩ → 1
2

( |0⟩ + |1⟩)
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No cloning theorem
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|a⟩

|a⟩|b⟩

|a⟩
Can we copy arbitrary qubits, in order to provide redundancy?

Uclone

Answer: No

Quantum mechanics prevents us from using traditional error correction techniques

Proof: Uclone ( |a⟩ ⊗ |b⟩) = |a⟩ ⊗ |a⟩
Uclone ( |a′ ⟩ ⊗ |b⟩) = |a′ ⟩ ⊗ |a′ ⟩ .

Suppose

Then taking inner product of both sides gives:
⟨a |a′ ⟩ = ⟨a |a′ ⟩2

so  i.e. cannot copy arbitrary states.⟨a |a′ ⟩ = 0 or 1
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Quantum error correction
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Idea: Encode one logical qubit in a larger set of physical qubits

Example: Bit flip code

Suppose a bit flip (  gate) occurs with 
probability 

X
p

8

It should be emphasized that the 3-qubit code does not
represent a full quantum code. This is due to the fact
that the code cannot simultaneously correct for both bit
and phase flips [Sec. IX]. This code is a repetition code
extended by Shor (Sho95) to construct the 9-qubit quan-
tum code, demonstrating that QEC was possible.

The 3-qubit code encodes a single logical qubit into
three physical qubits with the property that it can correct
for a single, �x, bit-flip error. The two logical basis states
|0i

L
and |1i

L
are defined as,

|0i
L
= |000i , |1i

L
= |111i , (25)

such that an arbitrary single qubit state | i = ↵ |0i+� |1i
is mapped to,

↵ |0i+ � |1i ! ↵ |0i
L
+ � |1i

L

= ↵ |000i+ � |111i

= | i
L
.

(26)

Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this

FIG. 2 Quantum Circuit to prepare the |0iL state for the 3-
qubit code where an arbitrary single qubit state, | i is coupled
to two freshly initialized ancilla qubits via CNOT gates to
prepare | iL.

code is able to correct for a single bit-flip error is the
binary distance between the two codeword states. No-
tice that three individual bit flips are required to take
|0i

L
$ |1i

L
, hence if we assume | i = |0i

L
, a single bit

flip on any qubit leaves the final state closer to |0i
L
than

|1i
L
. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction

M

M
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o
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c
t

E
rro
r

FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong

8

It should be emphasized that the 3-qubit code does not
represent a full quantum code. This is due to the fact
that the code cannot simultaneously correct for both bit
and phase flips [Sec. IX]. This code is a repetition code
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tum code, demonstrating that QEC was possible.
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How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
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FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong
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It should be emphasized that the 3-qubit code does not
represent a full quantum code. This is due to the fact
that the code cannot simultaneously correct for both bit
and phase flips [Sec. IX]. This code is a repetition code
extended by Shor (Sho95) to construct the 9-qubit quan-
tum code, demonstrating that QEC was possible.

The 3-qubit code encodes a single logical qubit into
three physical qubits with the property that it can correct
for a single, �x, bit-flip error. The two logical basis states
|0i
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and |1i

L
are defined as,
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Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this

FIG. 2 Quantum Circuit to prepare the |0iL state for the 3-
qubit code where an arbitrary single qubit state, | i is coupled
to two freshly initialized ancilla qubits via CNOT gates to
prepare | iL.

code is able to correct for a single bit-flip error is the
binary distance between the two codeword states. No-
tice that three individual bit flips are required to take
|0i

L
$ |1i

L
, hence if we assume | i = |0i

L
, a single bit

flip on any qubit leaves the final state closer to |0i
L
than

|1i
L
. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction
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FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong
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Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this
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tice that three individual bit flips are required to take
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. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction
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FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong
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Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this
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code is able to correct for a single bit-flip error is the
binary distance between the two codeword states. No-
tice that three individual bit flips are required to take
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, hence if we assume | i = |0i

L
, a single bit

flip on any qubit leaves the final state closer to |0i
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than
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. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction

M

M

C
o
rre
c
t

E
rro
r

FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong
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Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this
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qubit code where an arbitrary single qubit state, | i is coupled
to two freshly initialized ancilla qubits via CNOT gates to
prepare | iL.

code is able to correct for a single bit-flip error is the
binary distance between the two codeword states. No-
tice that three individual bit flips are required to take
|0i

L
$ |1i

L
, hence if we assume | i = |0i

L
, a single bit

flip on any qubit leaves the final state closer to |0i
L
than

|1i
L
. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction
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FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong
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Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this

FIG. 2 Quantum Circuit to prepare the |0iL state for the 3-
qubit code where an arbitrary single qubit state, | i is coupled
to two freshly initialized ancilla qubits via CNOT gates to
prepare | iL.

code is able to correct for a single bit-flip error is the
binary distance between the two codeword states. No-
tice that three individual bit flips are required to take
|0i

L
$ |1i

L
, hence if we assume | i = |0i

L
, a single bit

flip on any qubit leaves the final state closer to |0i
L
than

|1i
L
. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction
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FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong
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Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this
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code is able to correct for a single bit-flip error is the
binary distance between the two codeword states. No-
tice that three individual bit flips are required to take
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. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction
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FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong

8

It should be emphasized that the 3-qubit code does not
represent a full quantum code. This is due to the fact
that the code cannot simultaneously correct for both bit
and phase flips [Sec. IX]. This code is a repetition code
extended by Shor (Sho95) to construct the 9-qubit quan-
tum code, demonstrating that QEC was possible.

The 3-qubit code encodes a single logical qubit into
three physical qubits with the property that it can correct
for a single, �x, bit-flip error. The two logical basis states
|0i

L
and |1i

L
are defined as,

|0i
L
= |000i , |1i

L
= |111i , (25)

such that an arbitrary single qubit state | i = ↵ |0i+� |1i
is mapped to,
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Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this

FIG. 2 Quantum Circuit to prepare the |0iL state for the 3-
qubit code where an arbitrary single qubit state, | i is coupled
to two freshly initialized ancilla qubits via CNOT gates to
prepare | iL.

code is able to correct for a single bit-flip error is the
binary distance between the two codeword states. No-
tice that three individual bit flips are required to take
|0i

L
$ |1i

L
, hence if we assume | i = |0i

L
, a single bit

flip on any qubit leaves the final state closer to |0i
L
than

|1i
L
. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction
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FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong

Devitt, Munro, Nemoto (2013)
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Idea: Encode one logical qubit in a larger set of physical qubits

Example: Bit flip code

Suppose a bit flip (  gate) occurs with 
probability 

Encode our qubit  into 
three qubits: 

X
p

|ψ⟩ = a0 |0⟩ + a1 |1⟩
|ψencoded⟩ = a0 |000⟩ + a1 |111⟩
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It should be emphasized that the 3-qubit code does not
represent a full quantum code. This is due to the fact
that the code cannot simultaneously correct for both bit
and phase flips [Sec. IX]. This code is a repetition code
extended by Shor (Sho95) to construct the 9-qubit quan-
tum code, demonstrating that QEC was possible.

The 3-qubit code encodes a single logical qubit into
three physical qubits with the property that it can correct
for a single, �x, bit-flip error. The two logical basis states
|0i

L
and |1i

L
are defined as,
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such that an arbitrary single qubit state | i = ↵ |0i+� |1i
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Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this

FIG. 2 Quantum Circuit to prepare the |0iL state for the 3-
qubit code where an arbitrary single qubit state, | i is coupled
to two freshly initialized ancilla qubits via CNOT gates to
prepare | iL.

code is able to correct for a single bit-flip error is the
binary distance between the two codeword states. No-
tice that three individual bit flips are required to take
|0i

L
$ |1i

L
, hence if we assume | i = |0i

L
, a single bit

flip on any qubit leaves the final state closer to |0i
L
than

|1i
L
. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction
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FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong
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It should be emphasized that the 3-qubit code does not
represent a full quantum code. This is due to the fact
that the code cannot simultaneously correct for both bit
and phase flips [Sec. IX]. This code is a repetition code
extended by Shor (Sho95) to construct the 9-qubit quan-
tum code, demonstrating that QEC was possible.

The 3-qubit code encodes a single logical qubit into
three physical qubits with the property that it can correct
for a single, �x, bit-flip error. The two logical basis states
|0i
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and |1i
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are defined as,
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such that an arbitrary single qubit state | i = ↵ |0i+� |1i
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Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this

FIG. 2 Quantum Circuit to prepare the |0iL state for the 3-
qubit code where an arbitrary single qubit state, | i is coupled
to two freshly initialized ancilla qubits via CNOT gates to
prepare | iL.

code is able to correct for a single bit-flip error is the
binary distance between the two codeword states. No-
tice that three individual bit flips are required to take
|0i

L
$ |1i

L
, hence if we assume | i = |0i

L
, a single bit

flip on any qubit leaves the final state closer to |0i
L
than

|1i
L
. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction
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FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong
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It should be emphasized that the 3-qubit code does not
represent a full quantum code. This is due to the fact
that the code cannot simultaneously correct for both bit
and phase flips [Sec. IX]. This code is a repetition code
extended by Shor (Sho95) to construct the 9-qubit quan-
tum code, demonstrating that QEC was possible.

The 3-qubit code encodes a single logical qubit into
three physical qubits with the property that it can correct
for a single, �x, bit-flip error. The two logical basis states
|0i

L
and |1i

L
are defined as,

|0i
L
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such that an arbitrary single qubit state | i = ↵ |0i+� |1i
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Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this

FIG. 2 Quantum Circuit to prepare the |0iL state for the 3-
qubit code where an arbitrary single qubit state, | i is coupled
to two freshly initialized ancilla qubits via CNOT gates to
prepare | iL.

code is able to correct for a single bit-flip error is the
binary distance between the two codeword states. No-
tice that three individual bit flips are required to take
|0i

L
$ |1i

L
, hence if we assume | i = |0i

L
, a single bit

flip on any qubit leaves the final state closer to |0i
L
than

|1i
L
. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction
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FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong
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It should be emphasized that the 3-qubit code does not
represent a full quantum code. This is due to the fact
that the code cannot simultaneously correct for both bit
and phase flips [Sec. IX]. This code is a repetition code
extended by Shor (Sho95) to construct the 9-qubit quan-
tum code, demonstrating that QEC was possible.

The 3-qubit code encodes a single logical qubit into
three physical qubits with the property that it can correct
for a single, �x, bit-flip error. The two logical basis states
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are defined as,
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Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this

FIG. 2 Quantum Circuit to prepare the |0iL state for the 3-
qubit code where an arbitrary single qubit state, | i is coupled
to two freshly initialized ancilla qubits via CNOT gates to
prepare | iL.

code is able to correct for a single bit-flip error is the
binary distance between the two codeword states. No-
tice that three individual bit flips are required to take
|0i

L
$ |1i

L
, hence if we assume | i = |0i

L
, a single bit

flip on any qubit leaves the final state closer to |0i
L
than

|1i
L
. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction
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FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong
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It should be emphasized that the 3-qubit code does not
represent a full quantum code. This is due to the fact
that the code cannot simultaneously correct for both bit
and phase flips [Sec. IX]. This code is a repetition code
extended by Shor (Sho95) to construct the 9-qubit quan-
tum code, demonstrating that QEC was possible.

The 3-qubit code encodes a single logical qubit into
three physical qubits with the property that it can correct
for a single, �x, bit-flip error. The two logical basis states
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Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this

FIG. 2 Quantum Circuit to prepare the |0iL state for the 3-
qubit code where an arbitrary single qubit state, | i is coupled
to two freshly initialized ancilla qubits via CNOT gates to
prepare | iL.

code is able to correct for a single bit-flip error is the
binary distance between the two codeword states. No-
tice that three individual bit flips are required to take
|0i

L
$ |1i

L
, hence if we assume | i = |0i

L
, a single bit

flip on any qubit leaves the final state closer to |0i
L
than

|1i
L
. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction
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FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong
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It should be emphasized that the 3-qubit code does not
represent a full quantum code. This is due to the fact
that the code cannot simultaneously correct for both bit
and phase flips [Sec. IX]. This code is a repetition code
extended by Shor (Sho95) to construct the 9-qubit quan-
tum code, demonstrating that QEC was possible.

The 3-qubit code encodes a single logical qubit into
three physical qubits with the property that it can correct
for a single, �x, bit-flip error. The two logical basis states
|0i

L
and |1i

L
are defined as,

|0i
L
= |000i , |1i

L
= |111i , (25)

such that an arbitrary single qubit state | i = ↵ |0i+� |1i
is mapped to,
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Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this

FIG. 2 Quantum Circuit to prepare the |0iL state for the 3-
qubit code where an arbitrary single qubit state, | i is coupled
to two freshly initialized ancilla qubits via CNOT gates to
prepare | iL.

code is able to correct for a single bit-flip error is the
binary distance between the two codeword states. No-
tice that three individual bit flips are required to take
|0i

L
$ |1i

L
, hence if we assume | i = |0i

L
, a single bit

flip on any qubit leaves the final state closer to |0i
L
than

|1i
L
. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction
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FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong
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It should be emphasized that the 3-qubit code does not
represent a full quantum code. This is due to the fact
that the code cannot simultaneously correct for both bit
and phase flips [Sec. IX]. This code is a repetition code
extended by Shor (Sho95) to construct the 9-qubit quan-
tum code, demonstrating that QEC was possible.

The 3-qubit code encodes a single logical qubit into
three physical qubits with the property that it can correct
for a single, �x, bit-flip error. The two logical basis states
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are defined as,
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Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this

FIG. 2 Quantum Circuit to prepare the |0iL state for the 3-
qubit code where an arbitrary single qubit state, | i is coupled
to two freshly initialized ancilla qubits via CNOT gates to
prepare | iL.

code is able to correct for a single bit-flip error is the
binary distance between the two codeword states. No-
tice that three individual bit flips are required to take
|0i

L
$ |1i

L
, hence if we assume | i = |0i

L
, a single bit

flip on any qubit leaves the final state closer to |0i
L
than

|1i
L
. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction
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FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong
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It should be emphasized that the 3-qubit code does not
represent a full quantum code. This is due to the fact
that the code cannot simultaneously correct for both bit
and phase flips [Sec. IX]. This code is a repetition code
extended by Shor (Sho95) to construct the 9-qubit quan-
tum code, demonstrating that QEC was possible.

The 3-qubit code encodes a single logical qubit into
three physical qubits with the property that it can correct
for a single, �x, bit-flip error. The two logical basis states
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are defined as,
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Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this

FIG. 2 Quantum Circuit to prepare the |0iL state for the 3-
qubit code where an arbitrary single qubit state, | i is coupled
to two freshly initialized ancilla qubits via CNOT gates to
prepare | iL.

code is able to correct for a single bit-flip error is the
binary distance between the two codeword states. No-
tice that three individual bit flips are required to take
|0i

L
$ |1i

L
, hence if we assume | i = |0i

L
, a single bit

flip on any qubit leaves the final state closer to |0i
L
than

|1i
L
. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction
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FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong
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It should be emphasized that the 3-qubit code does not
represent a full quantum code. This is due to the fact
that the code cannot simultaneously correct for both bit
and phase flips [Sec. IX]. This code is a repetition code
extended by Shor (Sho95) to construct the 9-qubit quan-
tum code, demonstrating that QEC was possible.

The 3-qubit code encodes a single logical qubit into
three physical qubits with the property that it can correct
for a single, �x, bit-flip error. The two logical basis states
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are defined as,
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Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this

FIG. 2 Quantum Circuit to prepare the |0iL state for the 3-
qubit code where an arbitrary single qubit state, | i is coupled
to two freshly initialized ancilla qubits via CNOT gates to
prepare | iL.

code is able to correct for a single bit-flip error is the
binary distance between the two codeword states. No-
tice that three individual bit flips are required to take
|0i

L
$ |1i

L
, hence if we assume | i = |0i

L
, a single bit

flip on any qubit leaves the final state closer to |0i
L
than

|1i
L
. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction
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FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong
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It should be emphasized that the 3-qubit code does not
represent a full quantum code. This is due to the fact
that the code cannot simultaneously correct for both bit
and phase flips [Sec. IX]. This code is a repetition code
extended by Shor (Sho95) to construct the 9-qubit quan-
tum code, demonstrating that QEC was possible.

The 3-qubit code encodes a single logical qubit into
three physical qubits with the property that it can correct
for a single, �x, bit-flip error. The two logical basis states
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Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this

FIG. 2 Quantum Circuit to prepare the |0iL state for the 3-
qubit code where an arbitrary single qubit state, | i is coupled
to two freshly initialized ancilla qubits via CNOT gates to
prepare | iL.

code is able to correct for a single bit-flip error is the
binary distance between the two codeword states. No-
tice that three individual bit flips are required to take
|0i

L
$ |1i

L
, hence if we assume | i = |0i

L
, a single bit

flip on any qubit leaves the final state closer to |0i
L
than

|1i
L
. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction
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FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong

Devitt, Munro, Nemoto (2013)
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Idea: Encode one logical qubit in a larger set of physical qubits

Example: Bit flip code

Suppose a bit flip (  gate) occurs with 
probability 

Encode our qubit  into 
three qubits: 

Introduce ancilla qubits to measure the parity 
of the three qubits

X
p

|ψ⟩ = a0 |0⟩ + a1 |1⟩
|ψencoded⟩ = a0 |000⟩ + a1 |111⟩
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It should be emphasized that the 3-qubit code does not
represent a full quantum code. This is due to the fact
that the code cannot simultaneously correct for both bit
and phase flips [Sec. IX]. This code is a repetition code
extended by Shor (Sho95) to construct the 9-qubit quan-
tum code, demonstrating that QEC was possible.

The 3-qubit code encodes a single logical qubit into
three physical qubits with the property that it can correct
for a single, �x, bit-flip error. The two logical basis states
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Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this

FIG. 2 Quantum Circuit to prepare the |0iL state for the 3-
qubit code where an arbitrary single qubit state, | i is coupled
to two freshly initialized ancilla qubits via CNOT gates to
prepare | iL.

code is able to correct for a single bit-flip error is the
binary distance between the two codeword states. No-
tice that three individual bit flips are required to take
|0i

L
$ |1i

L
, hence if we assume | i = |0i

L
, a single bit

flip on any qubit leaves the final state closer to |0i
L
than

|1i
L
. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction
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FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong

8

It should be emphasized that the 3-qubit code does not
represent a full quantum code. This is due to the fact
that the code cannot simultaneously correct for both bit
and phase flips [Sec. IX]. This code is a repetition code
extended by Shor (Sho95) to construct the 9-qubit quan-
tum code, demonstrating that QEC was possible.

The 3-qubit code encodes a single logical qubit into
three physical qubits with the property that it can correct
for a single, �x, bit-flip error. The two logical basis states
|0i

L
and |1i

L
are defined as,

|0i
L
= |000i , |1i

L
= |111i , (25)

such that an arbitrary single qubit state | i = ↵ |0i+� |1i
is mapped to,

↵ |0i+ � |1i ! ↵ |0i
L
+ � |1i

L

= ↵ |000i+ � |111i

= | i
L
.

(26)

Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this

FIG. 2 Quantum Circuit to prepare the |0iL state for the 3-
qubit code where an arbitrary single qubit state, | i is coupled
to two freshly initialized ancilla qubits via CNOT gates to
prepare | iL.

code is able to correct for a single bit-flip error is the
binary distance between the two codeword states. No-
tice that three individual bit flips are required to take
|0i

L
$ |1i

L
, hence if we assume | i = |0i

L
, a single bit

flip on any qubit leaves the final state closer to |0i
L
than

|1i
L
. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction
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FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong

Devitt, Munro, Nemoto (2013)
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Idea: Encode one logical qubit in a larger set of physical qubits

Example: Bit flip code

Suppose a bit flip (  gate) occurs with 
probability 

Encode our qubit  into 
three qubits: 

Introduce ancilla qubits to measure the parity 
of the three qubits

Perform correction

X
p

|ψ⟩ = a0 |0⟩ + a1 |1⟩
|ψencoded⟩ = a0 |000⟩ + a1 |111⟩

8

It should be emphasized that the 3-qubit code does not
represent a full quantum code. This is due to the fact
that the code cannot simultaneously correct for both bit
and phase flips [Sec. IX]. This code is a repetition code
extended by Shor (Sho95) to construct the 9-qubit quan-
tum code, demonstrating that QEC was possible.

The 3-qubit code encodes a single logical qubit into
three physical qubits with the property that it can correct
for a single, �x, bit-flip error. The two logical basis states
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are defined as,
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Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this

FIG. 2 Quantum Circuit to prepare the |0iL state for the 3-
qubit code where an arbitrary single qubit state, | i is coupled
to two freshly initialized ancilla qubits via CNOT gates to
prepare | iL.

code is able to correct for a single bit-flip error is the
binary distance between the two codeword states. No-
tice that three individual bit flips are required to take
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, hence if we assume | i = |0i
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, a single bit

flip on any qubit leaves the final state closer to |0i
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than

|1i
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. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction
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FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong
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It should be emphasized that the 3-qubit code does not
represent a full quantum code. This is due to the fact
that the code cannot simultaneously correct for both bit
and phase flips [Sec. IX]. This code is a repetition code
extended by Shor (Sho95) to construct the 9-qubit quan-
tum code, demonstrating that QEC was possible.

The 3-qubit code encodes a single logical qubit into
three physical qubits with the property that it can correct
for a single, �x, bit-flip error. The two logical basis states
|0i
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L
are defined as,
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Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this

FIG. 2 Quantum Circuit to prepare the |0iL state for the 3-
qubit code where an arbitrary single qubit state, | i is coupled
to two freshly initialized ancilla qubits via CNOT gates to
prepare | iL.

code is able to correct for a single bit-flip error is the
binary distance between the two codeword states. No-
tice that three individual bit flips are required to take
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, hence if we assume | i = |0i
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, a single bit

flip on any qubit leaves the final state closer to |0i
L
than

|1i
L
. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction

M

M

C
o
rre
c
t

E
rro
r

FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong

Devitt, Munro, Nemoto (2013)



James Mulligan REYES Nuclear Mentoring Program: Quantum Computing, Part 1 Aug 9 2022

Quantum error correction

47

Idea: Encode one logical qubit in a larger set of physical qubits

Quantum threshold theorem: If errors are below a certain threshold, then you can 
correct errors faster than you introduce them

There are a variety of error correction codes:
Shor code
Steane code
Surface codes
…

Demonstrating “break-even” point is active goal of research
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Outline

1. What is a quantum computer?

2. What are potential uses of quantum computing?

3. What are the challenges to achieve quantum advantage?
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Basics:
Introduction to qubits
Unitary gates: Nielsen+Chuang 
Section 1.3

Introduction to complexity classes

Quantum computing overviews: 
https://arxiv.org/pdf/1905.07240.pdf
https://arxiv.org/pdf/1801.00862.pdf

Quantum simulation: https://arxiv.org/
pdf/1907.03505.pdf

Qiskit tutorials from IBM Quantum Lab

Create an account: https://quantum-computing.ibm.com/lab

Login and navigate to qiskit-tutorials/qiskit/circuits

Complete the following two tutorials:

01_circuit_basics.ipynb

3_summary_of_quantum_operations.ipynb

Navigate to qiskit-tutorials/qiskit/simulators

Complete the following two tutorials:

2_device_noise_simulation.ipynb

3_building_moise_models.ipynb

Navigate to qiskit-tutorials/qiskit-ibm-runtime

Complete the following tutorial:

01_introduction_ibm_cloud_runtime.ipynb

Not required, but you may find them useful and interesting!

https://jonathan-hui.medium.com/qc-what-are-qubits-in-quantum-computing-cdb3cb566595
http://mmrc.amss.cas.cn/tlb/201702/W020170224608149940643.pdf
https://www.quantum-bits.org/?p=1988
https://arxiv.org/pdf/1905.07240.pdf
https://arxiv.org/pdf/1801.00862.pdf
https://arxiv.org/pdf/1907.03505.pdf
https://arxiv.org/pdf/1907.03505.pdf
https://quantum-computing.ibm.com/lab

