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…but no strong coupling! …but no dynamics!
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Emergence in QCD
While we know the Lagrangian…we still often don’t know how to solve it

Opportunity to study a strongly-interacting, 
many-body quantum field theory

What are the dynamics that confine 
quarks and gluons into hadrons?

What is the landscape of QCD matter? Why Lattice QCD?

Outline

The decomposition of the 
nucleon mass

Non-perturbative renormalization

Results and further challenges
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The quark-gluon plasma
Creating and probing the properties of the quark-gluon plasma

Quarks & gluons are confined in hadrons in ordinary matter. Heavy-ion collisions deposit huge
energy in a finite region, creating quark-gluon plasma (QGP) medium for �x ,�⌧ ⇠ 10 fm.

ALICE event

Only see final state.

What are medium’s properties?

The created QGP demonstrates hydrodynamic and near-equilibrium behaviors
! we can learned a lot long-wave length properties ⌘/s, ⇣/s, · · ·

We still need additional probes to test its microscopic structures.

Weiyao Ke HENPIC (online) July 2, 2020 3 / 17

Weiyao Ke

Figure 1.4: Lattice QCD calculation of several thermodynamic quantities including "
T 4 vs.

T , which exhibits a rapid rise in the degrees of freedom near a crossover temperature Tc

[10].

1.3.1 A strongly coupled relativistic fluid

When we heat up QCD matter, deconfinement is achieved as the hadronic bound states are

melted. But there are two crucial questions that must be answered if we are to understand

the nature of hot QCD matter. First, what is the structure of deconfined QCD matter at

a given T? Does it consist of individual quarks and gluons, or are there quasi-particles,

such as screened color centers (e.g. “dressed” quarks or gluons) or perhaps more exotic

structures, which are the relevant constituents of the system? If quasi-particles do exist

at certain T , at what T do they melt? And what is the structure of QCD matter during

the transition? This is a particularly tantalizing question, since it may give us a view of

the mechanism of confinement. Second, what is the coupling in the quark-gluon plasma

at a given T? This of course depends on the first question – the coupling between what?

In the limit of ultra-high temperatures, where we expected to have individual partons, we

expect the coupling in the quark-gluon plasma to become weak, since momentum transfers

between partons become large and we obtain asymptotic freedom. But what is the case at

T that have been measured experimentally, up to ⇡ 3�4 Tc? And if there is a quasi-particle

12
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Bazavov et al. PRD 90, 094503 (2014)

ε
T4 ∝ degrees of freedom

Lattice QCD

HRG: Hadron resonance gas

pressure

energy density

entropy density

p =
ε =
s =

If we heat nuclear matter to , thermodynamic quantities exhibit a 
rapid rise near a crossover temperature 

T = %(100 MeV)
Tc

Deconfinement of quarks and gluons
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Heavy-ion collisions

We collide nuclei together at the 

to produce droplets of hot, dense 
quark-gluon plasma

Big picture

3

� We have a model of some physical process, say a relativistic heavy ion collision

� We have experimental measurements of this same process

Initial stage Hydrodynamics Cooper-Frye SMASH

What can we learn about 
the model from the 

measurements?

T ≈ 150-500 MeV t ∼ % (10 fm/c)
MADAI Collaboration

Large Hadron Collider (LHC) 
Relativistic Heavy Ion Collider (RHIC)

Soft collisions transform 
kinetic energy of nuclei into 
region of large energy density
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Real-time dynamics 
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Non-equilibrium dynamics are key to heavy-ion collisions

Spacetime picture of fragmentation and hadronization

Thermalization

Transport coefficients
Cohen, Lamm, Lawrence, Yamauchi (2021) 
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Real-time dynamics 

8

Traditional Lattice QCD cannot simulate dynamics due to a sign problem

∫ eiℒt t → it

Quantum computers may be able to directly simulate the 
Hamiltonian formulation of QCD

Non-equilibrium dynamics are key to heavy-ion collisions

Spacetime picture of fragmentation and hadronization

Thermalization

Transport coefficients
Cohen, Lamm, Lawrence, Yamauchi (2021) 

Can we simulate real-time dynamics in QCD?
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A new type of experiment

9

Quantum simulation

Tunable interactions between qubits

Superconducting circuits

Optical lattice
Photonics
Rydberg atoms
Topological
…

'ST]VMKLX�6MKIXXM�'SQTYXMRK�����

(MWGVIXI�UYERXYQ�KEXIW��[MXL�KEXI�XMQI�EGXMRK�EW�GPSGO�
WTIIH

6SFYWX�XLISVIXMGEP�JVEQI[SVO�JSV�IZIRXYEP�
JEYPX�XSPIVERGI

%REPSK

'SRWMHIVEFPI�WYGGIWW�MR�WSPZMRK�
59&3��ERH�SXLIV�TVSFPIQW

6IPEXMZIP]�QSVI�PMQMXIH�EFMPMX]�JSV�
HIZIPSTQIRX�SJ�EFWXVEGXMSR�PE]IVW

6IPEXMZIP]�WPS[IV�VI�MRMXMEPM^EXMSR

4XDQWXP�&RPSXWLQJ�3DUDGLJPV

…

And a variety of others:

Rapid advances in qubit coherence times and quantum gates

Trapped ions

State-of-the-art:  qubits,  two-qubit operations% (10) % (100)

F. Ringer, LBNL Quantum computing Aug 04 2021

Hamiltonian formulation of field theories

21

Kogut, Susskind `70s, Jordan, Lee, Preskill `11-`17

1. Digitize the field theory on a spatial lattice

2. Prepare wave packets of the free field theory

3. Turn on interactions adiabatically

4. Unitary time evolution

5. After the scattering turn interactions off adiabatically

6. Perform measurement

Scalar field theory is in BQP but at high energies
significant resources are required

Simulation protocol
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Quantum advantage

53-qubit superconducting circuit device

Algorithm: sampling of random circuits

 times faster than best classical 
supercomputers
% (103)

Martinis et al., Nature (2019)

506 | Nature | Vol 574 | 24 OCTOBER 2019

Article
developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:

F P x= 2 " ( )# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient 
width and depth such that the classical computing cost is prohibitively 
large. This is a difficult task because our logic gates are imperfect and 
the quantum states we intend to create are sensitive to errors. A single 
bit or phase flip over the course of the algorithm will completely shuffle 
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with 
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists 
of a two-dimensional array of 54 transmon qubits, where each qubit is 
tunably coupled to four nearest neighbours, in a rectangular lattice. The 

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this 
device is achieving high-fidelity single- and two-qubit operations, not 
just in isolation but also while performing a realistic computation with 
simultaneous gate operations on many qubits. We discuss the highlights 
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a 
macroscopic quantum state, such that currents and voltages behave 
quantum mechanically2,30. Our processor uses transmon qubits6, which 
can be thought of as nonlinear superconducting resonators at 5–7 GHz. 
The qubit is encoded as the two lowest quantum eigenstates of the 
resonant circuit. Each transmon has two controls: a microwave drive 
to excite the qubit, and a magnetic flux control to tune the frequency. 
Each qubit is connected to a linear resonator used to read out the qubit 
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring 
qubits using a new adjustable coupler31,32. Our coupler design allows us 
to quickly tune the qubit–qubit coupling from completely off to 40 MHz. 
One qubit did not function properly, so the device uses 53 qubits and 
86 couplers.

The processor is fabricated using aluminium for metallization and 
Josephson junctions, and indium for bump-bonds between two silicon 
wafers. The chip is wire-bonded to a superconducting circuit board 
and cooled to below 20 mK in a dilution refrigerator to reduce ambient 
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics, 

Qubit Adjustable coupler

a

b

10 mm

Fig. 1 | The Sycamore processor. a, Layout of processor, showing a rectangular 
array of 54 qubits (grey), each connected to its four nearest neighbours with 
couplers (blue). The inoperable qubit is outlined. b, Photograph of the  
Sycamore chip.

Nature | Vol 574 | 24 OCTOBER 2019 | 505

Article

Quantum supremacy using a programmable 
superconducting processor

Frank Arute1, Kunal Arya1, Ryan Babbush1, Dave Bacon1, Joseph C. Bardin1,2, Rami Barends1, 
Rupak Biswas3, Sergio Boixo1, Fernando G. S. L. Brandao1,4, David A. Buell1, Brian Burkett1,  
Yu Chen1, Zijun Chen1, Ben Chiaro5, Roberto Collins1, William Courtney1, Andrew Dunsworth1, 
Edward Farhi1, Brooks Foxen1,5, Austin Fowler1, Craig Gidney1, Marissa Giustina1, Rob Graff1, 
Keith Guerin1, Steve Habegger1, Matthew P. Harrigan1, Michael J. Hartmann1,6, Alan Ho1, 
Markus Hoffmann1, Trent Huang1, Travis S. Humble7, Sergei V. Isakov1, Evan Jeffrey1,  
Zhang Jiang1, Dvir Kafri1, Kostyantyn Kechedzhi1, Julian Kelly1, Paul V. Klimov1, Sergey Knysh1, 
Alexander Korotkov1,8, Fedor Kostritsa1, David Landhuis1, Mike Lindmark1, Erik Lucero1,  
Dmitry Lyakh9, Salvatore Mandrà3,10, Jarrod R. McClean1, Matthew McEwen5,  
Anthony Megrant1, Xiao Mi1, Kristel Michielsen11,12, Masoud Mohseni1, Josh Mutus1,  
Ofer Naaman1, Matthew Neeley1, Charles Neill1, Murphy Yuezhen Niu1, Eric Ostby1,  
Andre Petukhov1, John C. Platt1, Chris Quintana1, Eleanor G. Rieffel3, Pedram Roushan1, 
Nicholas C. Rubin1, Daniel Sank1, Kevin J. Satzinger1, Vadim Smelyanskiy1, Kevin J. Sung1,13, 
Matthew D. Trevithick1, Amit Vainsencher1, Benjamin Villalonga1,14, Theodore White1,  
Z. Jamie Yao1, Ping Yeh1, Adam Zalcman1, Hartmut Neven1 & John M. Martinis1,5*

The promise of quantum computers is that certain computational tasks might be 
executed exponentially faster on a quantum processor than on a classical processor1. A 
fundamental challenge is to build a high-!delity processor capable of running quantum 
algorithms in an exponentially large computational space. Here we report the use of a 
processor with programmable superconducting qubits2–7 to create quantum states on 
53 qubits, corresponding to a computational state-space of dimension 253 (about 1016). 
Measurements from repeated experiments sample the resulting probability 
distribution, which we verify using classical simulations. Our Sycamore processor takes 
about 200 seconds to sample one instance of a quantum circuit a million times—our 
benchmarks currently indicate that the equivalent task for a state-of-the-art classical 
supercomputer would take approximately 10,000 years. This dramatic increase in 
speed compared to all known classical algorithms is an experimental realization of 
quantum supremacy8–14 for this speci!c computational task, heralding a much-
anticipated computing paradigm.

In the early 1980s, Richard Feynman proposed that a quantum computer 
would be an effective tool with which to solve problems in physics 
and chemistry, given that it is exponentially costly to simulate large 
quantum systems with classical computers1. Realizing Feynman’s vision 
poses substantial experimental and theoretical challenges. First, can 
a quantum system be engineered to perform a computation in a large 
enough computational (Hilbert) space and with a low enough error 
rate to provide a quantum speedup? Second, can we formulate a prob-
lem that is hard for a classical computer but easy for a quantum com-
puter? By computing such a benchmark task on our superconducting 
qubit processor, we tackle both questions. Our experiment achieves 
quantum supremacy, a milestone on the path to full-scale quantum 
computing8–14.

In reaching this milestone, we show that quantum speedup is achiev-
able in a real-world system and is not precluded by any hidden physical 
laws. Quantum supremacy also heralds the era of noisy intermediate-
scale quantum (NISQ) technologies15. The benchmark task we demon-
strate has an immediate application in generating certifiable random 
numbers (S. Aaronson, manuscript in preparation); other initial uses 
for this new computational capability may include optimization16,17, 
machine learning18–21, materials science and chemistry22–24. However, 
realizing the full promise of quantum computing (using Shor’s algorithm 
for factoring, for example) still requires technical leaps to engineer 
fault-tolerant logical qubits25–29.

To achieve quantum supremacy, we made a number of techni-
cal advances which also pave the way towards error correction. We 
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The Extended Church-Turing Thesis is a foundational tenet 
in computer science, which states that a probabilistic Turing 
machine can efficiently simulate any process on a realistic 
physical device (1). In the 1980s, Richard Feynman observed 
that many-body quantum problems seemed difficult for 
classical computers due to the exponentially growing size of 
the quantum state Hilbert space. He proposed that a quan-
tum computer would be a natural solution. 

A number of quantum algorithms have since been de-
vised to efficiently solve problems believed to be classically 
hard, such as Shor’s factoring algorithm (2). Building a 
fault-tolerant quantum computer to run Shor’s algorithm, 
however, still requires long-term efforts. Quantum sampling 
algorithms (3–6), based on plausible computational com-
plexity arguments, were proposed for near-term demonstra-
tions of quantum computational speedup in solving certain 
well-defined tasks compared to current supercomputers. If 
the speedup appears overwhelming such that no classical 
computer can perform the same task in a reasonable 
amount of time and is unlikely overturned by classical algo-
rithmic or hardware improvements, it was called quantum 
computational advantage or quantum supremacy (7, 8). 
Here, we use the first term. 

A very recent experiment on a 53-qubit processor has 
generated a million noisy (~0.2% fidelity) samples in 200 s 
(8), while a supercomputer would take 10,000 years. It was 
soon argued that the classical algorithm can be improved to 
cost only a few days to compute all the 253 quantum proba-
bility amplitudes and generate ideal samples (9). Thus, if the 
competition were to generate a much larger size of samples, 
for example, ~1010, the quantum advantage would be re-
versed provided with sufficient storage. This sample-size-
dependence of the comparison—an analog to loopholes in 
Bell tests (10)—suggests that quantum advantage would re-
quire long-term competitions between faster classical simu-
lations and improved quantum devices. 

Boson sampling, proposed by Aaronson and Arkhipov 
(5), was the first feasible protocol for quantum computa-
tional advantage. In boson sampling and its variants (11, 12), 
non-classical light is injected into a linear optical network, 
and in the output highly random, photon-number- and 
path-entangled state is measured by single-photon detec-
tors. The dimension of the entangled state grows exponen-
tially with both the number of photons and the modes, 
which fast renders the storage of the quantum probability 
amplitudes impossible. The state-of-the-art classical simula-

Quantum computational advantage using photons 
Han-Sen Zhong1,2*, Hui Wang1,2*, Yu-Hao Deng1,2*, Ming-Cheng Chen1,2*, Li-Chao Peng1,2,                       
Yi-Han Luo1,2, Jian Qin1,2, Dian Wu1,2, Xing Ding1,2, Yi Hu1,2, Peng Hu3, Xiao-Yan Yang3,                       
Wei-Jun Zhang3, Hao Li3, Yuxuan Li4, Xiao Jiang1,2, Lin Gan4, Guangwen Yang4, Lixing You3,        
Zhen Wang3, Li Li1,2, Nai-Le Liu1,2, Chao-Yang Lu1,2, Jian-Wei Pan1,2† 
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Quantum computers promises to perform certain tasks that are believed to be intractable to classical 
computers. Boson sampling is such a task and is considered as a strong candidate to demonstrate the 
quantum computational advantage. We perform Gaussian boson sampling by sending 50 indistinguishable 
single-mode squeezed states into a 100-mode ultralow-loss interferometer with full connectivity and 
random matrix—the whole optical setup is phase-locked—and sampling the output using 100 high-
efficiency single-photon detectors. The obtained samples are validated against plausible hypotheses 
exploiting thermal states, distinguishable photons, and uniform distribution. The photonic quantum 
computer generates up to 76 output photon clicks, which yields an output state-space dimension of 1030 
and a sampling rate that is ~1014 faster than using the state-of-the-art simulation strategy and 
supercomputers. 
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Photonic device — special-purpose

Claim:  times faster than 
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Quantum computing
Superposition and entanglement

If one can control this high-dimensional space, e.g. with appropriate interference of amplitudes, then 
one can potentially achieve exponential speedup of certain computations

For  qubits, there are  amplitudesN 2N

e.g. |ψ⟩ = a1 |000⟩ + a2 |001⟩ + a3 |010⟩ + a4 |011⟩ + a5 |100⟩ + a6 |101⟩ + a7 |110⟩ + a8 |111⟩

|ψ⟩ =
2N

∑
i=1

ai |ψi⟩
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Quantum computing
Superposition and entanglement

If one can control this high-dimensional space, e.g. with appropriate interference of amplitudes, then 
one can potentially achieve exponential speedup of certain computations

For  qubits, there are  amplitudesN 2N

e.g. |ψ⟩ = a1 |000⟩ + a2 |001⟩ + a3 |010⟩ + a4 |011⟩ + a5 |100⟩ + a6 |101⟩ + a7 |110⟩ + a8 |111⟩

|ψ⟩ =
2N

∑
i=1

ai |ψi⟩

P: Polynomial-time solution on classical computer 
NP:  Polynomial-time verification on classical computer 
BQP: Polynomial-time solution on quantum computer

Computational complexity

QC can solve some classically hard problems

P

BQP

NP
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Quantum computing
Superposition and entanglement

If one can control this high-dimensional space, e.g. with appropriate interference of amplitudes, then 
one can potentially achieve exponential speedup of certain computations

For  qubits, there are  amplitudesN 2N

e.g. |ψ⟩ = a1 |000⟩ + a2 |001⟩ + a3 |010⟩ + a4 |011⟩ + a5 |100⟩ + a6 |101⟩ + a7 |110⟩ + a8 |111⟩

|ψ⟩ =
2N

∑
i=1

ai |ψi⟩

P

BQP

NP
Scattering in scalar field theory

QCD?

Jordan, Lee, Preskill (2012-2018)

Dynamics of many-body non-relativistic quantum system
Feynman (1982), 
Lloyd (1996)

Preskill (2018), Klco, Savage (2018), 
Muschik et al. (2016), Davoudi et al. (2019), …



James Mulligan, UC Berkeley Seminar in Hadronic Physics, McGill University Feb 21, 2022 14

Outline

1. Formulating the problem: Open quantum 
systems in heavy-ion collisions

2. Simulating particle states: hard probes

3. Simulating quantum field theories: 
thermalization and hadronization

F. Ringer Open quantum systems & string breaking October 14 2021

Open quantum systems

26

• Couple to a thermal environment

• Thermal scalar field theory

• Yukawa-type interaction

• Non-equilibrium dynamics

• Eventually approximates thermalization

where

where
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Outline

1. Formulating the problem: Open quantum 
systems in heavy-ion collisions

2. Simulating particle states: hard probes

3. Simulating quantum field theories: 
thermalization and hadronization



James Mulligan, UC Berkeley Seminar in Hadronic Physics, McGill University Feb 21, 2022 16

The QGP is too small and short-lived to be probed by scattering beams

Use “self-produced” probes

Matt Durham – APS Group on Hadronic Physics Workshop 24

Outline
• Introduction
• Quarkonium in pp collisions
• Quarkonium in Medium - Small Systems
• Quarkonium in Medium - Larger Systems
• Exotics
• Future Facilities
• Summary

Heavy quarksJets

Probing the quark-gluon plasma

Jet yields are suppressed due to 
“energy loss” to the dense medium

Heavy quark bound pairs (quarkonium) 
are “melted” by the hot medium
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Real-time dynamics of the probe

17

Focus on calculating the evolution of the probes rather than the full quark-gluon plasma

In vacuum: calculate scattering of asymptotic states 
using perturbative QCD

No sense of  “time evolution”

In medium: must combine real-time probe evolution 
with hydrodynamic evolution of the QGP

Current theory approaches use modeling
Majumder PRC 88 (2013)
Caucal, Iancu, Mueller, Soyez PRL 120 (2018)
…
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Open quantum systems
Study the real time dynamics of the quantum evolution of 
probes in the nuclear medium (LHC/RHIC/EIC)

Environment - Nuclear matter

H(t) = HS(t) +HE(t) +HI(t)

Subsystem - Probe — Jet, heavy quarks, …
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Quantum simulations of open quantum systemsF. Ringer, YITP January 19, 2022 30

Open quantum systems

• Time evolve the density matrix - von Neumann equation

• Trace out environmental degrees of freedom

• Assume environment is in thermal equilibrium

• Can be formally solve as

<latexit sha1_base64="lpycPXD/61FAtJzzEntzvGhEqng=">AAACF3icbVDLSgMxFM3UV62vUZdugkVwNcwUUTdC0Y3LCvYBnWHIpGkbmsmEJCOUaf/Cjb/ixoUibnXn35hOZ6GtBy73cM69JPdEglGlXffbKq2srq1vlDcrW9s7u3v2/kFLJanEpIkTlshOhBRhlJOmppqRjpAExREj7Wh0M/PbD0QqmvB7PRYkiNGA0z7FSBsptB1fDhN4BX2VxiGHIuQTXygacl8iPmDEZ3mDc3ES2lXXcXPAZeIVpAoKNEL7y+8lOI0J15ghpbqeK3SQIakpZmRa8VNFBMIjNCBdQzmKiQqy/K4pPDFKD/YTaYprmKu/NzIUKzWOIzMZIz1Ui95M/M/rprp/GWSUi1QTjucP9VMGdQJnIcEelQRrNjYEYUnNXyEeIomwNlFWTAje4snLpFVzvHOndndWrV8XcZTBETgGp8ADF6AObkEDNAEGj+AZvII368l6sd6tj/loySp2DsEfWJ8/cFqgIQ==</latexit>
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see talks by Yukinao Akamatsu, 
Nora Brambilla, Michael Strickland
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Open quantum systems
Study the real time dynamics of the quantum evolution of 
probes in the nuclear medium (LHC/RHIC/EIC)

Environment - Nuclear matter

H(t) = HS(t) +HE(t) +HI(t)

The time evolution of the full system is 
governed by the von Neumann equation:

Subsystem - Probe — Jet, heavy quarks, …
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Open quantum systems
Study the real time dynamics of the quantum evolution of 
probes in the nuclear medium (LHC/RHIC/EIC)

Environment - Nuclear matter

H(t) = HS(t) +HE(t) +HI(t)

In the Markovian limit, the subsystem is described by 
a Lindblad equation:

⇢S = trE [⇢]

d

dt
⇢S = �i [HS , ⇢S ] +

mX

j=1
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Subsystem - Probe — Jet, heavy quarks, …

The time evolution of the full system is 
governed by the von Neumann equation:
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Quantum simulation
It is exponentially expensive to simulate an -body 
quantum system on a classical computer:   amplitudes!

N
2N

State preparation
Time evolution
Measurement

But a quantum computer can naturally simulate a quantum system

Quantum simulation of the Schrödinger equation
The evolution is unitary and time reversible

Evolution in time steps Δt = t/Ncycle

Time evolution of closed systems
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Non-unitary evolution

U

. . .

V † V

| ai

d

dt
⇢S = �i [HS , ⇢S ] +

mX

j=1

✓
Lj⇢SL

†
j �

1

2
L
†
jLj⇢S � 1

2
⇢SL

†
jLj

◆

The Stinespring dilation theorem

Any allowed quantum operation can be written as a unitary evolution acting on a larger 
space (after coupling to appropriate ancilla), and reducing back to the subsystem

In open quantum systems, the subsystem evolution is non-unitary

V †V = 1 V V † 6= 1

Quantum algorithm to simulate 
Lindblad evolution of open system
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Outline

1. Formulating the problem: Open quantum 
systems in heavy-ion collisions

2. Simulating particle states: hard probes

3. Simulating quantum field theories: 
thermalization and hadronization
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Open quantum systems: Quarkonia

Akamatsu, Rothkopf et al. `12-`20, Brambilla et al. `17-`20
Yao, Mueller, Mehen `18-`20, Sharma, Tiwari `20

The evolution of quarkonia in the QGP can be described by the Lindblad equation 

P. Braun-Munzinger and J. Stachel, Nature (2007)

“Simple” system: 
reduces to quantum 
mechanics (NRQCD)

Blaizot, Escobedo `18,  Yao, Mehen `18, `20Markovian limit
Small coupling of system and environment
Semi-classical transport

Currently various approximations are considered
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Open quantum systems: Quarkonia

Akamatsu, Rothkopf et al. `12-`20, Brambilla et al. `17-`20
Yao, Mueller, Mehen `18-`20, Sharma, Tiwari `20

NRQCD + semiclassical approach vs. full quantum evolution
Sharma, Tiwari `20

Survival probability of the vacuum state

semiclassical

quantum

Bjorken expanding QGP T0 = 475 MeV
Quantum treatment has important phenomenological consequences

The evolution of quarkonia in the QGP can be described by the Lindblad equation 

P. Braun-Munzinger and J. Stachel, Nature (2007)

“Simple” system: 
reduces to quantum 
mechanics (NRQCD)

Blaizot, Escobedo `18,  Yao, Mehen `18, `20Markovian limit
Small coupling of system and environment
Semi-classical transport

Currently various approximations are considered
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Open quantum systems: Jet broadening
 Yao, Vaidya JHEP 10 024 (2020)

  Vaidya JHEP 11 064 (2021)
Vaidya 2101.02225
Vaidya 2107.00029
Vaidya 2109.11568

Soft Collinear Effective Theory

Forward scattering, Glauber 
gluon exchange

Markovian master equation describes evolution of jet density matrix:

where the probability to be in a given momentum state is:

Jet energy Q

First steps in the direction of jet physics
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Quantum simulation of open quantum systems

. . .

Straightforward application for subsystems 
that can be described by particle states

Quantum circuit: Lindblad evolution

Since current quantum devices are small 
and noisy, simplify to a toy model in order 
to illustrate proof-of-concept

Requires:
 — subsystem Hamiltonian

 — subsystem initial state

 — Lindblad operators 

HS
|ψS⟩
Li
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Quantum simulation of open quantum systems

. . .

Toy model setup
Two-level system in a thermal environment

Pauli matrices ,  interaction strength X, Y, Z g

HS = ��E

2
Z

HI = gX ⌦ �(x = 0)

e.g. bound/unbound J/ψ, cc̄

Lindblad operators

j = 0, 1

Lj ⇠ g(X ⌥ iY )
J =

0 L†
0 L†

1 0
L0 0 0 0
L1 0 0 0
0 0 0 0

S

q

q̄
g

g
G

q

q̄ g

g

G

qq̄

g

gG

�EE

Quantum circuit: Lindblad evolution
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Quantum circuit synthesis

Single qubit

CNOT

. . .

qsearch compilerSiddiqi et al. `20

Approximate unitary operations with a 
compiled circuit of one- and two-qubit gates

Optimization problem w/unitary loss function

10 CNOT gates/cycle
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Jong, Metcalf, Mulligan, Ploskon, Ringer, Yao
PRD 104 L051501 (2021)

Similar to -dependentt RAA =
d�AA

hNcolli d�pp

 describes fraction that 
remains in “bound state”
P0(t)
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q
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g

G

qq̄

g
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�EE

Two-level system

Thermal scalar 
field theory

Quantum simulation of open quantum systems

https://arxiv.org/abs/2010.03571
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Jong, Metcalf, Mulligan, Ploskon, Ringer, Yao
PRD 104 L051501 (2021)

S

q

q̄
g

g
G

q

q̄ g

g

G

qq̄

g

gG

�EE

Two-level system

Thermal scalar 
field theory

Quantum simulation of open quantum systems

A classical simulation of the quantum circuit 
shows convergence to Lindblad evolution 
with a small number of cycles

 describes fraction that 
remains in “bound state”
P0(t)

https://arxiv.org/abs/2010.03571
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Two-level system

Thermal scalar 
field theory

Quantum simulation of open quantum systems

Quantum simulation on IBM Q Vigo device
with 

Without error mitigation
Ncycle = 1

Noise in quantum device causes 
disagreement with simulated circuit

https://arxiv.org/abs/2010.03571
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Error mitigation
Readout error

Unfolding

He, Nachman, de Jong, Bauer (2020)

Gate error
Zero-noise extrapolation of CNOT noise using Random Identity Insertions 

…

…Circuit 1

Circuit 2

Circuit 3
…

Nachman, Urbanek, de Jong, Bauer (2019)
Constrained matrix inversion

…



James Mulligan, UC Berkeley Seminar in Hadronic Physics, McGill University Feb 21, 2022

0 10 20 30 40

t [1/T ]

0.6

0.7

0.8

0.9

1.0

1.1

1.2

P
0(

t)

0 5 10 15 20 25

t [fm/c] (T = 300 MeV)

0 10 20 30 40

t [1/T ]

0.6

0.7

0.8

0.9

1.0

1.1

1.2

P
0(

t)

IBM Q Vigo, Ncycle = 1, g = 0.3

Uncorrected

Readout corrected

Readout + RIIM corrected

Simulator, Ncycle = 1

Simulator, Ncycle = 3

Runge ° Kutta

Thermal equilibrium

0 5 10 15 20 25

t [fm/c] (T = 300 MeV)

0 10 20 30 40

t [1/T ]

0.6

0.7

0.8

0.9

1.0

1.1

1.2

P
0(

t)

IBM Q Vigo, Ncycle = 1, g = 0.3

Uncorrected

Readout corrected

Readout + RIIM corrected

Simulator, Ncycle = 1

Simulator, Ncycle = 3

Runge ° Kutta

Thermal equilibrium

0 5 10 15 20 25

t [fm/c] (T = 300 MeV)

0 10 20 30 40

t [1/T ]

0.6

0.7

0.8

0.9

1.0

1.1

1.2

P
0(

t)

IBM Q Vigo, Ncycle = 1, g = 0.3

Uncorrected

Readout corrected

Readout + RIIM corrected

Simulator, Ncycle = 1

Simulator, Ncycle = 3

Runge ° Kutta

Thermal equilibrium

0 5 10 15 20 25

t [fm/c] (T = 300 MeV)

0 10 20 30 40

t [1/T ]

0.6

0.7

0.8

0.9

1.0

1.1

1.2

P
0(

t)

IBM Q Vigo, Ncycle = 1, g = 0.3

Uncorrected

Readout corrected

Readout + RIIM corrected

Simulator, Ncycle = 1

Simulator, Ncycle = 3

Runge ° Kutta

Thermal equilibrium

0 5 10 15 20 25

t [fm/c] (T = 300 MeV)

34

Jong, Metcalf, Mulligan, Ploskon, Ringer, Yao
PRD 104 L051501 (2021)

S

q

q̄
g

g
G

q

q̄ g

g

G

qq̄

g

gG

�EE

Two-level system

Thermal scalar 
field theory

Quantum simulation of open quantum systems

Bauer, He, de Jong, Nachman (2021)
Random Identity Insertion Method (RIIM)

Proof of concept

CNOT gate error correction gives good 
agreement

Quantum simulation on IBM Q Vigo device
with Ncycle = 1

https://arxiv.org/abs/2010.03571


James Mulligan, UC Berkeley Seminar in Hadronic Physics, McGill University Feb 21, 2022

4

0 5 10 15 20 25 30 35 40

t [1/T ]

0.7

0.8

0.9

1.0

1.1

1.2

P
0(

t)

Simulator
g = 0.3

g = 0.5

g = 0.7

Runge � Kutta

Thermal equilibrium

0 5 10 15 20 25

t [fm/c] (T = 300 MeV)

FIG. 3. Simulation of the quantum circuit with Ncycle = 100
for various system-environment couplings, along with numer-
ical solution using a 4th order Runge-Kutta method. The
upper time axis corresponds to a medium with a tempera-
ture of T = 300 MeV. Each time point in the simulator result
consists of 80192 shots (runs).

medium. We initialize the state as ⇢S(t = 0) = |0ih0|
and choose �E = 1(T ).

The result for this toy model obtained from the IBM Q
qiskit simulator [111] is shown in Fig. 3. We measure
P0(t) ⌘ h0|⇢S(t)|0i, which can be interpreted as the time-
dependent nuclear modification factor. Each time point
corresponds to an independent quantum circuit, where
the measurement is performed only at the end, as shown
in Fig. 2. The results of the quantum algorithm with
Ncycle = 100 are shown for di↵erent values of the cou-
pling g. They are consistent with the results obtained
with a 4th order Runge-Kutta method that solves Eq. (9)
classically. This agreement demonstrates that the circuit
successfully solves the Lindblad equation. As expected,
the strength of the coupling g controls the rate of ap-
proaching thermalization.

In order to run the circuit on a quantum device, we
select Ncycle = 1 in order to achieve a su�ciently small
circuit depth. Modern quantum software packages are
available to compile quantum circuits that approximate
general unitary operators with minimal error and opti-
mal depth [10, 112–114]. We synthesize a circuit for

the e�iJ
p
�t operator in terms of single qubit and cnot

gates using the qsearch compiler [114]. The compiler
yields circuits with 70 gates on average, including ap-
proximately 10 cnots per cycle; an example circuit for
one cycle is shown in the supplemental material.

The results obtained from IBM Q Vigo device [115]
are shown in Fig. 4. In addition to the uncorrected re-
sult, the results with readout and cnot error mitiga-
tion are also shown. We correct the readout error us-
ing the constrained matrix inversion approach in IBM’s

FIG. 4. Results from the IBM Q Vigo device including dif-
ferent error mitigations compared to results from the qiskit
simulator for Ncycle = 1 and Ncycle = 3 and the Runge-Kutta
method. Higher values of Ncycle quickly converge to the re-
sult using the Runge-Kutta method. Each time point in the
simulator result consists of 800192 shots (runs).

qiskit-ignis package. The response matrix can be
found in the supplemental material. We also correct for
cnot noise using a leading order zero-noise extrapola-
tion based on the recently developed resource e�cient
Random Identity Insertion Method (RIIM) [116]. This
procedure corrects for depolarization noise using a set
of additional (cnot)2 identity insertions, at the expense
of amplifying statistical noise. Each data point corre-
sponds to 5 evenly spaced time points that are averaged
together. Each time point is calculated from the aver-
age of 49152 shots (runs). We observe that the error
mitigation is more important at small values of t. Simi-
lar results were reproduced on the IBM Q Valencia and
Santiago devices [117, 118].

Overall, we observe good agreement of the results from
the quantum device with the results from the simulator
for Ncycle = 1 after the error mitigation is applied. The
choice of Ncycle = 1 is seen to be a reasonable approxima-
tion for su�ciently small t. Moreover, a modest increase
to Ncycle = 3, as shown by the simulator in Fig. 4, yields
considerably improved convergence, which is promising
for near-term applications. These results demonstrate
that the simulation of open quantum system dynamics
relevant for HICs should be feasible on current and near-
term quantum devices.

Conclusions and Outlook. We performed simulations
of open quantum systems using quantum devices from
IBM Q. In particular, we focused on simulating the non-
unitary evolution of a subsystem governed by the Lind-
blad equation. We demonstrated that digital quantum
simulations with a few qubits and a circuit depth of ⇠ 70
gate operations with ⇠ 10 cnot gates are feasible on
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Outline

F. Ringer Open quantum systems & string breaking October 14 2021

Open quantum systems

26

• Couple to a thermal environment

• Thermal scalar field theory

• Yukawa-type interaction

• Non-equilibrium dynamics

• Eventually approximates thermalization

where

where

1. Formulating the problem: Open quantum 
systems in heavy-ion collisions

2. Simulating particle states: hard probes

3. Simulating quantum field theories: 
thermalization and hadronization
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Simulating QCD on quantum computers

37

Discretize space on a lattice, and digitize fields
No sign problem: real-time evolution and high density

Near-term goals:
Formulate how to efficiently digitize QCD
Simulate simpler QFTs in order to gain 
insights about QCD

Long-term goal: simulate limited energy range of QCD
Good candidate: strongly-coupled regime
Computing -matrix at LHC not feasible:  qubitsS ∼ % (1018)

Introduction Equation of state Color screening Summary

QCD on a lattice✏

�

�

�

SQCD[U, Â̄, Â] = a
4

ÿ

x

Nfÿ

f =1

Â̄f (x)
!

/D[U(x)] + mf
"

Âf (x)

≠ a
4

ÿ

x

ÿ

µ<‹

2
g2

0

Re tr
)

1 ≠ Uµ‹(x) + O(a2)
*

Dµ[Uµ(x)]Âf (x) =
Uµ(x)Âf (x + aµ̂) ≠ U

†
µ(x ≠ aµ̂)Âf (x ≠ aµ̂)

2a
+ O(a2)

Uµ(x) = exp[ig0Aµ(x)] gauge link
Uµ‹(x) = Uµ(x)U‹(x + aµ̂)U†

µ(x + a‹̂)U†
‹(x) plaquette

HPC=∆

5 / 25Bauer, Nachman, Freytsis (2021)

Klco et al. (2021)
Raychowdhury, Stryker (2020)

Alexandru et al. (2019)
Davoudi et al. (2019)
Muschik et al. (2016)

…
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Schwinger model
 gauge theory in 1+1DU(1)

F. Ringer Schwinger model October 14 2021

Schwinger model

15

• 1+1 dimensional version of QED

• U(1) gauge theory

• Spontaneous chiral symmetry breaking

• Confining potential         (instead of            

f        in 3+1dim)

• Model for hadronization & string breaking 

in QCD
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Loshaj, Kharzeev `13

Confinement
Chiral symmetry breaking

Schwinger (1962)
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Schwinger model
 gauge theory in 1+1DU(1)

F. Ringer Schwinger model October 14 2021

Schwinger model

15

• 1+1 dimensional version of QED

• U(1) gauge theory

• Spontaneous chiral symmetry breaking

• Confining potential         (instead of            

f        in 3+1dim)

• Model for hadronization & string breaking 

in QCD
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Loshaj, Kharzeev `13

Confinement
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F. Ringer Schwinger model October 14 2021

Hamiltonian formulation - discretized

20

Kogut, Susskind `70s

Gauss’s law

• Physical states have to satisfy
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e.g.

F. Ringer Schwinger model October 14 2021

Hamiltonian formulation - discretized

17

Kogut, Susskind `70s
• Time continuous, 1-dimensional spatial lattice

• Continuum limit
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a ! 0

 lattice sites
 create/destroy fermion
 create/destroy gauge link

Nf = 2N
σ±

L±
n

Discretized Hamiltonian — staggered fermions

a

Schwinger (1962)
Kogut, Susskind (1973-1977)
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F. Ringer Schwinger model October 14 2021

Hamiltonian formulation - discretized

21

Number of physical states

• Combinatorial result for               , spatial sites

# physical states

# Lattice
sites

Jong, Lee, Mulligan, Ploskon, FR, Yao `21
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N

Schwinger model

40

Number of physical states:

F. Ringer Schwinger model October 14 2021

Hamiltonian of the Schwinger model

23

Klco, Savage et al. `18

• Unitary time evolution and perform 
measurement at the end

| (t)i = e�iHSt| (0)i
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measurement at the end
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• Physical states

• Projection onto definite momentum (here         )

• Positive parity, periodic boundary conditions

Truncate the Hilbert space: subgroups of definite momentum and parity
, positive parityk = 0

Klco, Savage (2018)
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Gauss’s law

• Physical states have to satisfy
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• Couple to a thermal environment

• Thermal scalar field theory

• Yukawa-type interaction

• Non-equilibrium dynamics

• Eventually approximates thermalization

where

where

3

FIG. 3. Quantum simulation of non-equilibrium dynamics in the Schwinger model: hNe+e�i (left) and hE2i (right) using the
quantum circuit in Fig. 2 for two spatial lattice sites with Ncycle = 200, � = 0.1a, e = 1/a, m = 0.1/a, a = 1 and di↵erent
system-environment couplings. The time t is in units of a. For comparison, we also show a numerical solution (RK4) and the
dotted line indicates the thermal equilibrium.

be a Yukawa-type interaction,

HE =

Z
dx
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2
⇧2 +

1

2
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m2

�
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3!
g�3

�
, (5)

HI = �

Z
dx�(x) (x) (x) =

Z
dx OE(x)OS(x) , (6)

where we define OE(x) = ��(x) and OS(x) =  (x) (x).
We assume that the interaction HI is weak and that

the environment is large enough such that its change is
negligible over the typical relaxation time of the sys-
tem, i.e. we use the Markovian approximation. Then
the full density matrix describing the system and the
thermal environment factorizes ⇢(t) = ⇢S(t) ⌦ ⇢E , where
⇢E = e��HE/TrEe��HE . After tracing out the environ-
mental degrees of freedom, the time evolution of the sys-
tem density matrix ⇢S = trE [⇢] is governed by the Lind-
blad equation [99–101].

Furthermore, we consider the quantum Brownian mo-
tion limit, which is valid when the environment correla-
tion time ⌧E is hierarchically smaller than both the relax-
ation time ⌧R and the intrinsic time scale ⌧S of the sys-
tem. The condition ⌧E ⌧ ⌧R is the Markovian condition
mentioned above which is valid when HI is weak. The
condition ⌧E ⌧ ⌧S is equivalent to the hierarchy between
the environment temperature T and the characteristic
energy gap of the system �ES : T � �ES . For QFTs,
generally �ES ! 0 in the continuum. The Schrödinger-
picture Lindblad equation for the Schwinger model in the
quantum Brownian motion limit can be written as

d⇢S(t)

dt
= �i

⇥
HS , ⇢S(t)

⇤
+ L⇢S(t)L† � 1

2

�
L†L, ⇢S(t)

 
,

(7)

which can be interpreted as a field theoretical Caldeira-
Leggett equation [102] by dropping some of the higher

order terms in the expansion of ⌧E/⌧S . The correspond-
ing Lindblad operator is given by

L =
p

aNfD
⇣
OS � 1

4T

⇥
HS , OS

⇤⌘
, (8)

where D is a function of T , m�, g, and �, given by

D = �2

Z
dt dx TrE

�
⇢E �(t, x)�(0, 0)

�
. (9)

For our numerical results below, we treat D as an
input parameter. From Eq. (6), we find OS =
1/(2aNf )

P
n
(�1)n�z(n). Further details of the open

quantum system formulation are provided in the supple-
mental material.
Quantum algorithm. To simulate the non-unitary evo-

lution in Eq. (7) of the system on a quantum computer,
we apply the Stinespring dilation theorem [19, 87, 98] to
enlarge the Hilbert space, such that the system and addi-
tional ancillary qubits evolve unitarily together for small
time steps. For the evolution from 0 to t, we divide the
length of the time interval into Ncycle time steps or “cy-
cles”. For each cycle, we apply the algorithm with a time
step �t = t/Ncycle and the ancilla qubits are reset after
each cycle. With qubit reset operations, we only need
one ancilla qubit since Eq. (7) has only one Lindblad op-
erator. The quantum algorithm is shown schematically
in Fig. 2 for two cycles. The initial state is given by
| S(0)i ⌦ |0ia, where the initial state of the Schwinger
model | S(0)i is chosen to be the unoccupied bare vac-
uum state while the ancilla is initialized in the |0i state.
The J-operator is a 2 ⇥ 2 block matrix

J =

✓
0 L†

L 0

◆
. (10)

Other algorithms to simulate Lindblad equations are dis-
cussed in Refs. [63, 87, 104–109].

 — subsystem intrinsic time scale
 — subsystem relaxation time
 — environment correlation time

τS
τR
τE

Jong, Lee, Mulligan, Ploskon, Ringer, Yao 2106.08394 
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In the Quantum Brownian Motion limit,

the subsystem is described by a Lindblad equation:

 — Markovian approximation
 — valid if 

τR ≫ τE
τS ≫ τE T ≫ ΔES

3

FIG. 3. Quantum simulation of non-equilibrium dynamics in the Schwinger model: hNe+e�i (left) and hE2i (right) using the
quantum circuit in Fig. 2 for two spatial lattice sites with Ncycle = 200, � = 0.1a, e = 1/a, m = 0.1/a, a = 1 and di↵erent
system-environment couplings. The time t is in units of a. For comparison, we also show a numerical solution (RK4) and the
dotted line indicates the thermal equilibrium.
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time steps. For the evolution from 0 to t, we divide the
length of the time interval into Ncycle time steps or “cy-
cles”. For each cycle, we apply the algorithm with a time
step �t = t/Ncycle and the ancilla qubits are reset after
each cycle. With qubit reset operations, we only need
one ancilla qubit since Eq. (7) has only one Lindblad op-
erator. The quantum algorithm is shown schematically
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mentioned above which is valid when HI is weak. The
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quantum Brownian motion limit can be written as

d⇢S(t)

dt
= �i

⇥
HS , ⇢S(t)

⇤
+ L⇢S(t)L† � 1

2

�
L†L, ⇢S(t)

 
,

(7)

which can be interpreted as a field theoretical Caldeira-
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order terms in the expansion of ⌧E/⌧S . The correspond-
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For our numerical results below, we treat D as an
input parameter. From Eq. (6), we find OS =
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quantum system formulation are provided in the supple-
mental material.
Quantum algorithm. To simulate the non-unitary evo-

lution in Eq. (7) of the system on a quantum computer,
we apply the Stinespring dilation theorem [19, 87, 98] to
enlarge the Hilbert space, such that the system and addi-
tional ancillary qubits evolve unitarily together for small
time steps. For the evolution from 0 to t, we divide the
length of the time interval into Ncycle time steps or “cy-
cles”. For each cycle, we apply the algorithm with a time
step �t = t/Ncycle and the ancilla qubits are reset after
each cycle. With qubit reset operations, we only need
one ancilla qubit since Eq. (7) has only one Lindblad op-
erator. The quantum algorithm is shown schematically
in Fig. 2 for two cycles. The initial state is given by
| S(0)i ⌦ |0ia, where the initial state of the Schwinger
model | S(0)i is chosen to be the unoccupied bare vac-
uum state while the ancilla is initialized in the |0i state.
The J-operator is a 2 ⇥ 2 block matrix
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Other algorithms to simulate Lindblad equations are dis-
cussed in Refs. [63, 87, 104–109].
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quantum circuit in Fig. 2 for two spatial lattice sites with Ncycle = 200, � = 0.1a, e = 1/a, m = 0.1/a, a = 1 and di↵erent
system-environment couplings. The time t is in units of a. For comparison, we also show a numerical solution (RK4) and the
dotted line indicates the thermal equilibrium.
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to a thermal environment consisting of scalar fields in
1 + 1 dimensions. The Schwinger model serves as a com-
pelling example for our studies as it exhibits several fea-
tures which are also present in quantum chromodynam-
ics (QCD), such as confinement and spontaneous chiral
symmetry breaking [91–94]. Due to its relative simplic-
ity and important role in improving our understanding
of more complex theories such as QCD, various studies
have recently been carried out to investigate the real-
time dynamics of the Schwinger model as a closed sys-
tem [39, 40, 42, 46, 47]. In this work, we set up the rele-
vant formalism to study field theoretical non-equilibrium
dynamics. This formalism represents an important step
toward studies of real-time dynamics of QCD in a ther-
mal environment. In addition, we present results using
the quantum devices accessible through the IBMQ plat-
form. Also, our study demonstrates a method for prepar-
ing an initial thermal state - an essential ingredient in
applications of quantum computing to systems at finite
temperature.

Discretized Hamiltonian of the Schwinger model. The
Lagrangian of the (massive) Schwinger model is given
by [89, 90]

L =  
�
i /D � m

�
 � 1

4
Fµ⌫Fµ⌫ , (1)

where /D = �µDµ with {�µ, �⌫} = 2gµ⌫ , the covariant
derivative is Dµ = @µ � ieAµ and the field strength ten-
sor is Fµ⌫ = @µA⌫ � @⌫Aµ. The fermion field has two
components  = ( u, d)T , where u, d represent the up-
per and lower components, respectively. Furthermore, m
and e denote the mass and the charge of the fermion,
respectively.

To simulate the real-time dynamics of the Schwinger
model on a quantum computer, we employ the Kogut-
Susskind Hamiltonian formulation of Ref. [30] and dis-
cretize the field theory on a spatial lattice with N sites.
We employ periodic boundary conditions, which allows
for the projection onto a reduced Hilbert space with def-
inite momentum and parity. From the Lagrangian in
Eq. (1), the discretized Hamiltonian can be obtained
by choosing the axial gauge A0 = 0, using staggered
fermions [30, 95, 96], and applying the Jordan-Wigner
transformation [97]. The Hamiltonian can then be writ-
ten as

HS =
1

2a

Nf�1X
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�
�+(n)L�

n
��(n + 1) + �+(n + 1)L+
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��(n)
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✓
ae2

2
`2
n

+ m(�1)n
�z(n) + 1

2

◆
, (2)

where a is the lattice spacing, n labels the fermion lattice
sites, and Nf = 2N is the total number of fermion lattice
sites. See Fig. 1 for an example with Nf = 8. The contin-
uum theory is recovered in the limits a ! 0 and Nf ! 1,

FIG. 2. Quantum algorithm to simulate the time evolution
governed by the Lindblad equation using the Stinespring di-
lation theorem [98] for two cycles with time step �t. The
two unitary operators are given by UJ = exp (�iJ

p
�t) and

UHS = exp (�iHS�t). The ancilla qubit is reset after each
cycle.

such that aNf is fixed. Here �±(n) = (�x(n)± i�y(n))/2
and �x,y,z(n) are the Pauli matrices at fermion site n.
The operators L±

n
are the raising/lowering operators for

a quantum system with the eigenstates |`ni associated
with the eigenenergies `n. The eigenenergies `n corre-
spond to the electric flux between the fermion sites n
and n + 1 while the ladder operators L±

n
correspond to

the gauge link between n and n + 1, which increases or
decreases the electric flux by one unit. The subscript S of
the Hamiltonian in Eq. (2) indicates that the Schwinger
model will serve as the system interacting with a thermal
environment, see Eq. (4) below.

The lattice formulation of the Schwinger model varies
in literature in how the infinite number of states of the
gauge field are treated. Here we follow the setup of
Ref. [42], where a finite-dimensional representation of
the gauge degrees of freedom is achieved by imposing
a cuto↵ on the total electric flux. We find the following
closed form for the number of physical states that satisfy
Gauss’s law with |`n|  1,

NX
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2N

M

N�MX

K=0

✓
M � 1 + K

M � 1

◆✓
2N � 2K � M � 1

M � 1

◆
+ 3 .

(3)

In the following, we will focus on the Hilbert space pro-
jected onto positive-parity and zero-momentum states
with |`n|  1 and

P
n

|`n| < Nf . The derivation of
Eq. (3) and the relevant Hamiltonians and measurement
operators in matrix form can be found in the supplemen-
tal material.
Non-equilibrium dynamics in the quantum Brownian

motion limit. We now consider the Schwinger model cou-
pled to a thermal environment. The full Hamiltonian can
be decomposed as

H = HS + HE + HI , (4)

where HS denotes the Hamiltonian of the system, i.e.,
the Schwinger model given in Eq. (2), HE is the envi-
ronment Hamiltonian, and HI describes the interaction
between the two. We take the environment to be a ther-
mal scalar field theory and the coupling to the system to

We construct a quantum circuit to 
solve the Lindblad evolution 3
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FIG. 3. Quantum simulation of non-equilibrium dynamics in the Schwinger model: hNe+e�i (left) and hE2i (right) using the
quantum circuit in Fig. 2 for two spatial lattice sites with Ncycle = 200, � = 0.1a, e = 1/a, m = 0.1/a, a = 1 and di↵erent
system-environment couplings. The time t is in units of a. For comparison, we also show a numerical solution (RK4) and the
dotted line indicates the thermal equilibrium.
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where we define OE(x) = ��(x) and OS(x) =  (x) (x).
We assume that the interaction HI is weak and that

the environment is large enough such that its change is
negligible over the typical relaxation time of the sys-
tem, i.e. we use the Markovian approximation. Then
the full density matrix describing the system and the
thermal environment factorizes ⇢(t) = ⇢S(t) ⌦ ⇢E , where
⇢E = e��HE/TrEe��HE . After tracing out the environ-
mental degrees of freedom, the time evolution of the sys-
tem density matrix ⇢S = trE [⇢] is governed by the Lind-
blad equation [99–101].

Furthermore, we consider the quantum Brownian mo-
tion limit, which is valid when the environment correla-
tion time ⌧E is hierarchically smaller than both the relax-
ation time ⌧R and the intrinsic time scale ⌧S of the sys-
tem. The condition ⌧E ⌧ ⌧R is the Markovian condition
mentioned above which is valid when HI is weak. The
condition ⌧E ⌧ ⌧S is equivalent to the hierarchy between
the environment temperature T and the characteristic
energy gap of the system �ES : T � �ES . For QFTs,
generally �ES ! 0 in the continuum. The Schrödinger-
picture Lindblad equation for the Schwinger model in the
quantum Brownian motion limit can be written as
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which can be interpreted as a field theoretical Caldeira-
Leggett equation [102] by dropping some of the higher

order terms in the expansion of ⌧E/⌧S . The correspond-
ing Lindblad operator is given by
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For our numerical results below, we treat D as an
input parameter. From Eq. (6), we find OS =
1/(2aNf )
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quantum system formulation are provided in the supple-
mental material.
Quantum algorithm. To simulate the non-unitary evo-

lution in Eq. (7) of the system on a quantum computer,
we apply the Stinespring dilation theorem [19, 87, 98] to
enlarge the Hilbert space, such that the system and addi-
tional ancillary qubits evolve unitarily together for small
time steps. For the evolution from 0 to t, we divide the
length of the time interval into Ncycle time steps or “cy-
cles”. For each cycle, we apply the algorithm with a time
step �t = t/Ncycle and the ancilla qubits are reset after
each cycle. With qubit reset operations, we only need
one ancilla qubit since Eq. (7) has only one Lindblad op-
erator. The quantum algorithm is shown schematically
in Fig. 2 for two cycles. The initial state is given by
| S(0)i ⌦ |0ia, where the initial state of the Schwinger
model | S(0)i is chosen to be the unoccupied bare vac-
uum state while the ancilla is initialized in the |0i state.
The J-operator is a 2 ⇥ 2 block matrix

J =
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Other algorithms to simulate Lindblad equations are dis-
cussed in Refs. [63, 87, 104–109].

Note: The environment correlator  
determines how fast the system equilibrates 

D ∼ λ2

Non-equilibrium dynamics and thermalization

Number of  pairse+e−

Classical simulation of the quantum circuit 
reproduces the thermalization observed 
in numerical solution

Jong, Lee, Mulligan, Ploskon, Ringer, Yao 2106.08394 

https://arxiv.org/abs/2106.08394


James Mulligan, UC Berkeley Seminar in Hadronic Physics, McGill University Feb 21, 2022

F. Ringer Open quantum systems & string breaking October 14 2021

Open quantum systems

26

• Couple to a thermal environment

• Thermal scalar field theory

• Yukawa-type interaction

• Non-equilibrium dynamics

• Eventually approximates thermalization

where

where
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Simulation on IBM Q device
Error mitigation applied

Non-equilibrium dynamics and thermalization

Real-time dynamics of 
thermalization process

First quantum simulation of open 
quantum systems described by 
quantum field theories

F. Ringer Simulation on IBMQ December 09 2021

Simulation on IBMQ

37

• 6 qubits, 4 cycles with up to 50 CNOT and 500 single-qubit gates

• Approximate preparation of thermal state from non-equilibrium dynamics

6 qubits

Jong, Lee, Mulligan, Ploskon, Ringer, Yao 2106.08394 
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Hadronization

F. Ringer Quantum computing & Real-time dynamics February 02, 2022

The string-breaking mechanism

45

• Model of hadronization

• Real-time evolution               d

Jong, Lee, Mulligan, Ploskon, Ringer, Yao 
- in preparation

see also Magnifico et al., Berges et al.
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hEiElectric field

• Will inform studies of 
hadronization at the EIC 

Jong, Lee, Mulligan, Ploskon, Ringer, Yao
In preparation

Real-time picture of string 
breaking mechanism

Long-term goal: “movie” of 
hadronization process in QCD
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Schwinger `62• QED in 1+1 dimensions

• Model of hadronization & string breaking in QCD e.g. Pythia

• Confining potential       

• Phenomenological applications see e.g. Loshaj, Kharzeev `13
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We can also study dynamics of 
QED strings
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Open quantum systems

26

• Couple to a thermal environment

• Thermal scalar field theory

• Yukawa-type interaction

• Non-equilibrium dynamics

• Eventually approximates thermalization

where

where
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Summary

Many open questions — but long-term potential for a new game-changing tool in 
our understanding of QCD

Particle states: e.g. quarkonium dissociation and recombination
Quantum field theories: thermalization, hadronization

Open quantum system formalism — early work to simulate a variety of probes

A new type of experiment is emerging: Real-time evolution of 
QCD dynamics in heavy-ion collisions on quantum computers

Scalable extension to ?
Sufficient improvements to qubit quality and error correction?

SU(3)


