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Jet quenching in the quark-gluon plasma

We would like to learn fundamental questions about the deconfined state of QCD

O What are the relevant degrees of freedom of the QGP?
a Quasi-particles!?

O How does a strongly-coupled system arise from QFT?
a Compute bulk properties from first principles?
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Jets offer a compelling tool

O Jets can probe from the smallest medium scales to the largest medium scales

O Jet evolution can be computed from first principles

v »
< >
O Jets are strongly sensitive to (some) medium properties: g >, s’ ,s;{j:g
“ & S “‘_ \s
.r‘ g b* -
5 &
> -

April 17,2021

APS April Meeting

James Mulligan, LBNL



Jet quenching in the quark-gluon plasma

We would like to learn fundamental questions about the deconfined state of QCD

O What are the relevant degrees of freedom of the QGP?

a  Quasi-particles!?
0 How does a strongly-coupled system arise from QFT?

a Compute bulk properties from first principles?
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Jets offer a compelling tool

O Jets can probe from the smallest medium scales to the largest medium scales

O Jet evolution can be computed from first principles
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However, it is clear by now that this endeavor is not simple...
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The need for global analysis

Jet evolution involves physics that is not known from first principles: initial state,
hydrodynamic evolution, medium response, hadronic rescattering, hadronization

Fit models of the physics that are

not known from first-principles
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The need for global analysis

Jet evolution involves physics that is not known from first principles: initial state,
hydrodynamic evolution, medium response, hadronic rescattering, hadronization

Fit models of the physics that are

not known from first-principles

Jet evolution itself is complicated, and there is no (known) golden observable
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The jet transverse diffusion coefficient

As a parton propagates through the QGP, it will undergo momentum
exchanges transverse to its direction of propagation:

(ki) _ 1 J 24P (K1)
L

1 2 T

where P (ki) is a scattering kernel.

The accumulated <ki> can arise from
various microscopic interactions:

a Single hard emission
a Multiple soft scattering
O Smooth drag
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The jet transverse diffusion coefficient

As a parton propagates through the QGP, it will undergo momentum
exchanges transverse to its direction of propagation:

(ki) _ 1 J 24P (K1)
L

LT a2

q

where P (ki) is a scattering kernel.

/
4
A

g is one of the most important
, _ quantities characterizing jet quenching
various microscopic interactions: o Out-of-cone transport — “energy loss”

a Single hard emission In BDMPS: AE ~ gL”

0 Multiple soft scattering 0 Broadening _
g Smooth drag \ In BDMPS: Ap ~ /gL

The accumulated <ki> can arise from
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Parameterizing g

Under certain assumptions, g can be calculated

e.g. HTL formula — perturbative elastic scattering

However, we will instead parameterize g in JETSCAPE with a more general form:

150D _ 1o €O (4%) {A[ln(fi) —In(B)] | C[n(F) 1n<D>]}
? n (%)) n (§5)]°
g g
High-virtuality inspired HTL-inspired

I-independent elastic scattering off temperature T

Parton energy |

Local temperature
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Modular event generator framework for heavy-ion collisions

JETSCAPE 1903.07706

Medium-modified

Hard Parton shower:

MATTER

scattering: o v :
= 4 hadronization: 0 High-virtuality,
PYTHIA + MATTER | O > O, radiation-dominated
nPDF 0 <0, regime
LBT
: 0 Lowe-virtuality,
e > Viscous / scattering-dominated
streaming ydrodynamics: regime

Vishnu 2+1D
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Bayesian parameter estimation
P(O|D) ~ P(D|0)P(0) Jrv—

- = 0-5% Centrality —

/ \ . #830-40% Centrality _
——

. . ‘ l“l ¥ :
Posterior Likelihood Prior ;:» v
IR -
. . L. . 10 20 30 40 50 60 70 80
The prior is our initial knowledge of the parameters Pr (GeVio
Prior
The likelihood characterizes how likely we would be to observe the ‘
given data, given a set of parameters ¢/ Posterior
2 T .
~1 — pf _ pdata F
PD10) ~ exp [_ (Ailei AJ') ] where A; = Rypi = Raa - zos oy

2. is the covariance matrix

The posterior is the probability distribution of g, given the data

We sample the posterior using Markov Chain Monte Carlo (MCMC)

10 20 30 40 50 60 70 80
o (GeV/c)
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Results 210211337
LBT model
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it I Miaan coam i MATTER describes the data slightly less well

MATTER expected to be valid only at
sufficiently high pr; fit restricted
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ReSUItS 2102.11337

From these extracted parameters, we plot the extracted ¢

/  Weak dependence on 1, p \‘ cths
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MUIti-Stage model 2102.11337

Theoretical arguments suggest that a multi-stage model is more well-founded:

MATTER — high-virtuality, Q > Q,
LBT — low-virtuality, Q < Q,

—® Include additional parameter, (J,, to the fit

L e e B B e I R I I IR I R LN AR LA RARRE LARAN LARRE LARAY RAALS RARY AARAS
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0 Caveat: py range not
restricted as in MATTER
only case
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MUIti-Stage model 2102.11337
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Summary

We extracted the jet transport coefficient g(E, T) of the quark-gluon plasma

using Bayesian parameter estimation with inclusive hadron R, , data

0 Extracted as continuous function of £, I'— data significantly constrains prior distributions
0 Several JETSCAPE models considered: MATTER, LBT, MATTER+LBT
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Summary

We extracted the jet transport coefficient g(E, T) of the quark-gluon plasma

using Bayesian parameter estimation with inclusive hadron R, , data

0 Extracted as continuous function of £, I'— data significantly constrains prior distributions
0 Several JETSCAPE models considered: MATTER, LBT, MATTER+LBT

Global analysis will be key to uncovering the nature of deconfined QCD matter

0 Extension to additional medium properties: 7. .., medium response, quasi-particles, ...

nit’
0 Extension to additional observables — jet R, A, substructure, correlations, HE EWV, ...
0 Need theory input: improved modeling and parameterizations, multi-stage paradigm, ...

0 Need experiment input: (i) corrections, (ii) uncertainty correlations on HEPData

O Provide experimental guidance — observables, systems, centrality to best constrain models
\
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Backup
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PHENIX PRC 87 (2013)

Experimental data i ERC 72 (2012

ATLAS [HEP 09 (2015)

Inclusive hadron R, A

1.6_'"I"'I'"I"'I"'I"'__I'"'I""I'"'I""I""I""|'"'|""__I""I""I""I""I""I""l""l""l""_
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L] MUItIPIe Centl"aht)', SNN to Val")' T 1'4: DLejltaufrom PflENI?(Slgn I Datafrom ATLAS | I Datafrom CMS | J/EJ/T\S/I%I\% :
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0.8
We decompose the experimental ==
. . . 0.4¢F
covariance matrix into several =
SOUrces, with varying degree of 0g 90" 9294 76 78 10 20 30 40 50 60 70 80 10 2030 40 50 60 70 86 00

information reported by experiment Py (GeV/o Pr (GeVio Pr (GEV/0

Note: Please report sighed systematic uncertainty breakdowns in () HEPData
(or full covariances matrices)

0.0-0.1 0.31931 +0.066862 stat *11.376551075580494% sys,unfolding

—":F14.473809748383616% sys,trkeff +3.9122415926653775% sys,generator

0.1- 5.7953 +0.44877 stat +4.27125329701226% sys,unfolding

0.13 ——f) +1.7492371459259304% sysitrkefl F0.9203612018695351% sys,generator
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Jet quenching in JETSCAPE

Medium-modified

Hard Parton shower Jot

scattering hadronization

Hadronic
cascade

\ Initial soft N Viscous Cooper-Frye
density Hydrodynamics hadronization
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MAT TER W LBT

Majumder PRC 88 (201 3) Cao, Luo, Qin,Wang PRC 94 (2016)
Cao, Majumder PRC 101 (2020) PLB 777 (2018)
Medium-modified splitting function Elastic and inelastic scatterings — linearized
2 d 2 ‘
P, (2, Q%) = P¥*(2) + P™ed (5 (?) Boltzmann transport of jet partons

O Inelastic scatterings generate gluon radiation

High-virtuality, radiation-dominated @ Broadening due to elastic scattering

regime: Q > +/qE

Low-virtuality, scattering-dominated

regime
low Q and low E A M g
(near thermal) - = = fe/lgamacr B
[ See also:
high E / jEWEL
Martini
(near thermal) Q_PYT IA
ybrid Model
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Leading hadrons

While g is important for all jet observables, it is not the only important physics

O Re-scattering of soft emissions

. - Relevant to reconstructed jets
O Medium response

For leading hadron p, however, g is the dominant physics

We only need to know what is radiated away from the leading parton
— not what happens to those radiations
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J E T C o I I ab o ra‘ti o n JET Collaboration, PRC 90 (2014)

wee MARTINI - McGill-AMY
Previous work: Separate fits of g at RHIC and 6 (== HT-BW ¢ -== GLV-CUJET-
LHC for various pQCD models . - HT-M & :
o 4 gl . ~a. > 3 ]

= | t

Improvements in this talk:
0 Extraction of g as a continuous function

. Au+Au at RHIC :
of T, E | ﬁ —
A/ Lo DIS Pb+Pb at LHC, -

A
U8
!
T — o A o S SRR
{1 k| BEEH
I

0 Bayesian statistics — correct approach 0 K—" | < | | .
0 |Improved theoretical models 0 0.1 0.2 0.3 0.4 0.5
T (GeV)
See also:
Andrés, Armesto, Luzum, Salgado, Zurita (2016)
Ke,Wang (2020)
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Gaussian Process Emulators

In order to evaluate the likelihood across the parameter space 6, we need to
know the R, , predicted by JETSCAPE at prohibitively many different ¢

Solution: Non-parametric interpolation

fn(gnew) ______________________________________ !

This allows us to train an
interpolator using O (10 X dim 9)

JETSCAPE model calculations

with quantification of

interpolation uncertainty Giroor Mak
_ , imon /via

Qnew
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Gaussian Process Emulators

In order to evaluate the likelihood across the parameter space 6, we need to
know the R, , predicted by JETSCAPE at prohibitively many different ¢

Solution: Non-parametric interpolation

1.0 | LBT //
® Au-—Au200GeV,40—-50% B
Pb — Pb 2.76 TeV, 30 — 40% 25
0.8 1 Pb — Pb 5.02 TeV, 30 — 50% 5
E
S
s 0.61 —
This allows us to train an S z
VL
. . . QC 0.4 o
interpolator using O (10 X dim 9) |
o<
JETSCAPE model calculations <
. L (0002 0-50%) 7 g,
with quantification of p (e o) -lo
] ] ] 00d 7 gfP~PD5.02TeV,30-50%) _ g 5o,
interpolation uncertainty . . . . . . I
0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.25 0.50
RAR®
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ReSUItS 2102.11337
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ReSUItS 2102.11337

Mo | -- — - The extracted parameters are substantially
et | | 1w | different for MATTER vs. LBT

MATTER: large A, small C
LBT:small A, large C

Consistent with the original motivation of the
g parameterization:

(B, T) 50D _ 4oy <) (4w>2 g)ln(f) ~1n(8)] (Qhin(§) ~m(D)] |
9 n 12 T

High-virtuality inspired HTL-inspired

I-independent elastic scattering off temperature 1°

A B C D
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MUIti-Stage model 2102.11337

Extracted g of MATTER+LBT is smaller than MATTER,LBT alone

Due to additional quenching at low virtuality (compared to MATTER) or high virtuality (compared to LBT alone)

(a) S\
JETILAPE
10:| L | T | T | I | L | I | b I_
- ELEN L L L B e B
9 — MATTER 90% CR 15~ MATTER+LBT1 —
— —  Prior 90% m
8= ----LBT 90% CR 10 — -
2E -~MATTER+LBT1 90% CR 5f—- E
- o= Dolaboratio "Z02 04 06 08—
o F - 5 T (GeV) ]
— oF ' —
S - .
At -
35 i
oF _ ;
i~ p=100GeVc 77 =
:I | I | | I I | | I I | L1 1 1 | | I I | L1 1 1 | | I I:
8.1 0.2 03 04 05 06 07 0238

T (GeV)
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MUIti-Stage model 2102.11337

We also explored an alternate multi-stage parameterization, in which we replace
the “high-virtuality" term with E — QO

Q(Qa E7 T) ‘QO,A,C’,D L C(S) 4 y A {lﬂ (
E - ¥R (3)

=[O
N———
=
7 N\
>[&
N——
=
&
&
E/
{3
N
— =3I
N—""

Ji—)]

1.6_' UL L L DL L L L L L DL L L B crprrrrprreiprrebprreprretprreprrvprrvpprrreprrrrprrrprvrrprrvprrrvpr e ey et
. 4F AuAu 200 GeV Posterior } T PoPb2.76 TeV Posterior T PbPb 5.02 TeV Posteric M ] Improved fit
- Data from PHENIX T Datafrom ATLAS T Data from CMS JETSEMI\;JFE §
1.2F =0-10% Centrality —+ = 0-5% Centrality —+ = 0-10% Centrality -
- B 40-50% Centrality T [ 30-40% Centrality T [ 30-50% Centrality )
o Tede 1 T 4 " Median 1 WIill require additional
<E0_8'_ 1 I 1 i
m n 4 1
ok b b b Dt x observables to make more
T , Jh A S ; . o
0k e E: ; definitive statement about
——— SN S : .
= = i
02TV A : multi-stage model
T T T T T T | N T TR TN FE AT AT TS T T i P FEET FN TN FE T ATl N Tl AT ATl I
08 10 12 14 16 18 10 20 30 40 50 e0 70 80 10 20 30 40 50 60 70 80 90

o (GeV/c) P, (GeV/c) o (GeV/c)
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Principal component analysis

We have 66 data points
1 Rpp for various 4 /sy, centrality, pt

Fraction of Variance Explained

For each \/SNN, we perform PCA: S

O Instead of fitting a single GPE to this . °
66-dimensional space, we determine - o

the most important linear S

combinations of centrality, p o

a0 Keep e.g. 3 components o

Number of PC r
For each PC, train an independent GPE
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Closure
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