Determining the jet transport using Bayesian parameter estimation

James Mulligan

Nuclear Science Division Lawrence Berkeley National Laboratory

RHIP Seminar University of Tennessee, Knoxville Feb 23 2021

coefficient \hat{q} of the quark-gluon plasma

arXiv:2102.11337

Jet quenching in the quark-gluon plasma

We would like to learn big questions about the deconfined state of QCD

- What are the relevant degrees of freedom of the QGP? Quasi-particles?
- How does a strongly-coupled system arise from QFT? Compute bulk properties from first principles?

Jet quenching in the quark-gluon plasma

We would like to learn big questions about the deconfined state of QCD

- What are the relevant degrees of freedom of the QGP?
 Quasi-particles?
- How does a strongly-coupled system arise from QFT?
 Compute bulk properties from first principles?

Jets offer a compelling tool

- Jets can probe from the smallest medium scales to the largest medium scales
- Jet evolution can be computed from first principles
- ^{**D**} Jets are strongly sensitive to (some) medium properties: \hat{q}

Jet quenching in the quark-gluon plasma

We would like to learn big questions about the deconfined state of QCD

- What are the relevant degrees of freedom of the QGP? Quasi-particles?
- How does a strongly-coupled system arise from QFT? Compute bulk properties from first principles?

Jets offer a compelling tool

- Jets can probe from the smallest medium scales to the largest medium scales
- Jet evolution can be computed from first principles
- Jets are strongly sensitive to (some) medium properties: \hat{q}

However, it is clear by now that this endeavor is not simple...

Jet evolution involves physics that is not known from first principles: initial state, hydrodynamic evolution, medium response, hadronic rescattering, hadronization

RHIP Seminar, Uni

Jet evolution involves physics that is not known from first principles: initial state, hydrodynamic evolution, medium response, hadronic rescattering, hadronization

RHIP Seminar, Uni

Global analysis is needed to fit models of the nhysics that are not known from first-principles

6

Jet evolution itself is complicated, and there is no (known) golden observable

Simultaneous unknowns in jet quenching theory:

- Strongly-coupled vs. weakly-coupled interaction
- Spacetime picture of parton shower
- Factorization breaking
- Color coherence

• • •

Jet R_{AA} , for example, is strongly modified — but models with different physics predict similar values

7

Jet evolution itself is complicated, and there is no (known) golden observable

Simultaneous unknowns in jet quenching theory:

- Strongly-coupled vs. weakly-coupled interaction
- Spacetime picture of parton shower
- Factorization breaking
- Color coherence
- . . .

Need global analysis of multiple jet observables to:

- I. Distinguish theoretical approaches
- 2. Precisely determine medium properties

\hat{q} and JETSCAPE Bayesian parameter estimation Results

Outline

The jet transverse diffusion coefficient

As a parton propagates through the QGP, it will undergo momentum exchanges transverse to its direction of propagation:

$$\hat{q} \equiv \frac{\left\langle k_{\perp}^{2} \right\rangle}{L} = \frac{1}{L} \int dk_{\perp}^{2} \frac{dR}{dk_{\perp}^{2}}$$

where $P(k_{\perp}^2)$ is a scattering kernel.

The accumulated $\langle k_{\perp}^2 \rangle$ can arise from various microscopic interactions:

- Single hard emission
- Multiple soft scattering
- Smooth drag

The jet transverse diffusion coefficient

As a parton propagates through the QGP, it will undergo momentum exchanges transverse to its direction of propagation:

$$\hat{q} \equiv \frac{\left\langle k_{\perp}^{2} \right\rangle}{L} = \frac{1}{L} \int dk_{\perp}^{2} \frac{dR}{dk_{\perp}^{2}}$$

where $P(k_{\perp}^2)$ is a scattering kernel.

The accumulated $\langle k_{\perp}^2 \rangle$ can arise from various microscopic interactions:

- Single hard emission
- Multiple soft scattering
- Smooth drag

While \hat{q} is important for all jet observables, it is not the **only** important physics

- Re-scattering of soft emissions
- Medium response

For leading hadron $p_{\rm T}$, however, \hat{q} is the dominant physics

We only need to know what is radiated away from the leading parton

- Relevant to reconstructed jets

— not what happens to those radiations

Feb 23, 2021

12

Calculating \hat{q}

Under certain assumptions, \hat{q} can be calculated For example, assuming perturbative, small-angle elastic scattering off a thermal medium:

Calculating \hat{q}

Under certain assumptions, \hat{q} can be calculated For example, assuming perturbative, small-angle elastic scattering off a thermal medium:

However, we will instead **parameterize** \hat{q} in JETSCAPE with a more general form: $\left. \right)^{2} \left\{ \frac{A \left[\ln \left(\frac{E}{\Lambda} \right) - \ln(B) \right]}{\left[\ln \left(\frac{E}{\Lambda} \right) \right]^{2}} + \frac{C \left[\ln \left(\frac{E}{T} \right) - \ln(D) \right]}{\left[\ln \left(\frac{ET}{\Lambda^{2}} \right) \right]^{2}} \right\}$ High-virtuality inspired **HTL-inspired** *T*-independent elastic scattering off temperature T

$$\frac{\hat{q}(E,T)|_{A,B,C,D}}{T^3} = 42C_R \frac{\zeta(3)}{\pi} \left(\frac{4\pi}{9}\right)^2$$

Majumder PRC 88 (2013) Cao, Majumder PRC 101 (2020)

Medium-modified splitting function

$$P_a(z, Q^2) = P_a^{\text{vac}}(z) + P_a^{\text{med}}(z, Q^2)$$

Virtuality-ordered shower modified to contain spacetime information

High-virtuality, radiation-dominated regime: $Q \gg \sqrt{\hat{q}E}$

James Mulligan, LBNL

Feb 23, 2021

15

Majumder PRC 88 (2013) Cao, Majumder PRC 101 (2020)

Medium-modified splitting function

$$P_a(z, Q^2) = P_a^{\text{vac}}(z) + P_a^{\text{med}}(z, Q^2)$$

Virtuality-ordered shower modified to contain spacetime information

High-virtuality, radiation-dominated regime: $Q \gg \sqrt{\hat{q}E}$

James Mulligan, LBNL

Cao, Luo, Qin, Wang PRC 94 (2016) PLB 777 (2018)

Elastic and inelastic scatterings — linearized Boltzmann transport of jet partons

Inelastic scatterings generate gluon radiation — higher twist formalism

Low-virtuality, scattering-dominated regime Broadening due to elastic scattering

16

Jet quenching in JETSCAPE

James Mulligan, LBNL

RHIP Seminar, University of Tennessee

James Mulligan, LBNL

RHIP Seminar, University of Tennessee

This talk

 $\hat{q}(E,T)$ $\theta = \{A, B, C, D\}$

Previous work: Separate fits of \hat{q} at RHIC and LHC for various pQCD models

Improvements in this talk:

- **D** Extraction of \hat{q} as a continuous function of T, E
- Bayesian statistics correct approach
- Improved theoretical models

JET Collaboration

JET Collaboration, PRC 90 (2014)

RHIC : $\hat{q} \approx 1.2 \pm 0.3$ GeV²

Experimental data

PHENIX PRC 87 (2013) CMS EPJC 72 (2012) ATLAS JHEP 09 (2015)

20

Experimental uncertainties

We decompose the experimental covariance matrix into several sources:

- Uncorrelated uncertainties e.g. statistical
- Luminosity uncertainty fully correlated across $p_{\rm T}$, centrality bins
- \Box T_{AA} uncertainty fully correlated across p_T bins
- Other unspecified systematic uncertainties

ross $p_{\rm T}$, centrality bins bins

$$\Sigma_{k}^{E} = \Sigma_{k}^{\text{uncorr}} + \Sigma_{k}^{\text{fcorr}} + \Sigma_{k}^{\text{lcorr}}$$
$$\Sigma_{k,ij}^{\text{uncorr}} = \sigma_{k,i}^{\text{uncorr}} \sigma_{k,j}^{\text{uncorr}} \delta_{ij}$$
$$\Sigma_{k,ij}^{\text{fcorr}} = \sigma_{k,i}^{\text{fcorr}} \sigma_{k,j}^{\text{fcorr}}$$
$$\Sigma_{k,ij}^{\text{lcorr}} = \sigma_{k,i}^{\text{lcorr}} \sigma_{k,j}^{\text{lcorr}} \exp\left[-\left|\frac{p_{k,i}-p_{k,i}}{\ell_{k}}\right|\right]$$

Experimental uncertainties

We decompose the experimental covariance matrix into several sources:

- Uncorrelated uncertainties e.g. statistical
- Luminosity uncertainty fully correlated across $p_{\rm T}$, centrality bins
- \Box T_{AA} uncertainty fully correlated across p_T bins
- Other unspecified systematic uncertainties

There is a simple practice that we (experimentalists) need to start doing:

$$\Sigma_{k}^{E} = \Sigma_{k}^{\text{uncorr}} + \Sigma_{k}^{\text{fcorr}} + \Sigma_{k}^{\text{lcorr}}$$
$$\Sigma_{k,ij}^{\text{uncorr}} = \sigma_{k,i}^{\text{uncorr}} \sigma_{k,j}^{\text{uncorr}} \delta_{ij}$$
$$\Sigma_{k,ij}^{\text{fcorr}} = \sigma_{k,i}^{\text{fcorr}} \sigma_{k,j}^{\text{fcorr}}$$
$$\Sigma_{k,ij}^{\text{lcorr}} = \sigma_{k,i}^{\text{lcorr}} \sigma_{k,j}^{\text{lcorr}} \exp\left[-\left|\frac{p_{k,i}-p_{k,i}}{\ell_{k}}\right|\right]$$

Report signed systematic uncertainty breakdowns in HEPData

(or full covariances matrices)

Bayesian parameter estimation

Goal: Use experimental data to constrain the value of $\hat{q}(E,T)$

- I. Parameterize $\hat{q}(E,T) \Big|_{\theta = \{A,B,C,D\}}$ in a jet quenching model
- 2. Explore the parameter space θ to find the most likely values of θ for that model to explain the experimental data

We specifically want to constrain the **probability distribution** of \hat{q}

— Bayesian analysis

Bayesian parameter estimation $\hat{q}(E,T)$ $P(\theta \mid D) \sim P(D \mid \theta) P(\theta)$ Posterior Prior Likelihood

James Mulligan, LBNL

RHIP Seminar, University of Tennessee

The **prior** is our initial knowledge of the parameters — we will take a flat prior

James Mulligan, LBNL

RHIP Seminar, University of Tennessee

The **prior** is our initial knowledge of the parameters — we will take a flat prior The **likelihood** characterizes how likely we would be to observe the given data, given a set of parameters θ

$$P(D \mid \theta) \sim \exp \left[-\left(\Delta_i \Sigma_{ij}^{-1} \Delta_j \right)^2 \right] \quad \text{where } \Delta_i = R_{AA,i}^{\theta} - R_{AA}^{\text{data}}$$
$$\Sigma \text{ is the covariance matrix}$$

Bayesian parameter estimation $\hat{q}(E,T)$ $P(\theta \mid D) \sim P(D \mid \theta) P(\theta)$ Prior Likelihood

Bayesian para

$$P(\theta | D) \sim$$

Posterior
Like

The **prior** is our initial knowledge of the parameters — we will take a flat prior The **likelihood** characterizes how likely we would be to observe the given data, given a set of parameters θ

$$P(D \mid \theta) \sim \exp \left[-\left(\Delta_i \Sigma_{ij}^{-1} \Delta_j \right)^2 \right] \quad \text{where } \Delta_i = R_{AA,i}^{\theta} - R_{AA}^{\text{data}}$$
$$\Sigma \text{ is the covariance matrix}$$

The **posterior** is what we want — probability distribution of \hat{q} , given the data We will sample the posterior using Markov Chain Monte Carlo (MCMC)

Gaussian Process Emulators

In order to evaluate the likelihood across the parameter space θ , we need to know the R_{AA} predicted by JETSCAPE at **prohibitively many** different θ

Solution: Non-parametric interpolation

This allows us to train an interpolator using $\mathcal{O}(10 \times \dim \theta)$ JETSCAPE model calculations

with quantification of interpolation uncertainty

James Mulligan, LBNL

Simon Mak

Gaussian Process Emulators

Solution: Non-parametric interpolation

This allows us to train an interpolator using $\mathcal{O}(10 \times \dim \theta)$ JETSCAPE model calculations

with quantification of interpolation uncertainty

James Mulligan, LBNL

In order to evaluate the likelihood across the parameter space θ , we need to know the R_{AA} predicted by JETSCAPE at **prohibitively many** different θ

Results

LBT model

James Mulligan, LBNL

RHIP Seminar, University of Tennessee

2102.11337

LBT describes the data reasonably well Some small systematic deviations

Results

LBT model

James Mulligan, LBNL

RHIP Seminar, University of Tennessee

James Mulligan, LBNL

RHIP Seminar, University of Tennessee

Results

2102.11337

32

Results

The extracted parameters are substantially different for MATTER vs. LBT

MATTER: large A, small C

LBT: small A, large C

Consistent with the original motivation of the \hat{q} parameterization:

$$\frac{\hat{q}\left(E,T\right)|_{A,B,C,D}}{T^{3}} = 42C_{R}\frac{\zeta(3)}{\pi}\left(\frac{4\pi}{9}\right)^{2} \left\{ \frac{A\left[\ln\left(\frac{E}{\Lambda}\right) - \ln(B)\right]}{\left[\ln\left(\frac{E}{\Lambda}\right)\right]^{2}} + \frac{C\left[\ln\left(\frac{E}{T}\right) - \ln\left(\frac{E}{T}\right)\right]}{\left[\ln\left(\frac{ET}{\Lambda^{2}}\right)\right]} \right\}$$
High-virtuality inspired HTL-inspired T -independent elastic scattering off temperative temperature of the temperature of the temperature of the temperature of the temperature of temperature

ature T

From these extracted parameters, we plot the extracted \hat{q}

Smaller median: elastic scattering, multiple gluon emission

Results

Feb 23, 2021

2102.11337

Multi-stage model

Theoretical arguments suggest that a multi-stage model is more well-founded:

Include additional parameter, Q_0 , to the fit

- MATTER high-virtuality, $Q > Q_0$ LBT — low-virtuality, $Q < Q_0$

No evidence that multistage model improves agreement with data

> Caveat: $p_{\rm T}$ range not restricted as in MATTER only case

Multi-stage model

We also explored an alternate multi-stage parameterization, in which we replace the "high-virtuality" term with $E \rightarrow Q$

$$\frac{\hat{q}\left(Q,E,T\right)|_{Q_{0},A,C,D}}{T^{3}} = 42C_{R}\frac{\zeta(3)}{\pi}\left(\frac{4\pi}{9}\right)^{2} \left\{\frac{A\left[\ln\left(\frac{Q}{\Lambda}\right) - \ln\left(\frac{Q_{0}}{\Lambda}\right)\right]}{\left[\ln\left(\frac{Q}{\Lambda}\right)\right]^{2}}\theta(Q-Q_{0}) + \frac{C\left[\ln\left(\frac{E}{T}\right) - \ln(D)\right]}{\left[\ln\left(\frac{ET}{\Lambda^{2}}\right)\right]^{2}}\right\}$$

James Mulligan, LBNL

Improved fit

Will require additional observables to make more definitive statement about multi-stage model

2102.11337

Extracted \hat{q} of MATTER+LBT is smaller than MATTER,LBT alone

Due to additional quenching at low virtuality (compared to MATTER) or high virtuality (compared to LBT alone)

2102.11337

James Mulligan, LBNL

RHIP Seminar, University of Tennessee

We also test the impact of RHIC vs. LHC data

Fit dominated by LHC data

Due to choice of cutoff: $p_{\rm T} < 8 \text{ GeV}/c$

First extraction of virtuality-switching parameter: $Q_0 \sim 2 - 3 \text{ GeV}/c$

Summary

We extracted $\hat{q}(E,T)$ as a continuous function of E, T using Bayesian parameter estimation with inclusive hadron R_{AA} data

- Several JETSCAPE models considered: MATTER, LBT, MATTER+LBT
- Data significantly constrains prior distributions
- No evidence for multi-stage model being preferred by data

Summary

We extracted $\hat{q}(E,T)$ as a continuous function of E, T using Bayesian parameter estimation with inclusive hadron R_{AA} data

- Several JETSCAPE models considered: MATTER, LBT, MATTER+LBT
- Data significantly constrains prior distributions
- No evidence for multi-stage model being preferred by data

Global analysis is key to the future of the jet quenching physics program

- \square Extension to additional observables jet R_{AA} , substructure, correlations Need theory input: model parameterizations, multi-stage paradigm, improved modeling of heavy-ion stages (hydro calibration, quenching in hadronic phase), ...
 - Need experiment input: reporting of uncertainty correlations on HEPData
- Provide experimental guidance observables, systems, centrality to best constrain models

