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Jet quenching in the quark-gluon plasma

We would like to learn big questions about the deconfined state of QCD

O What are the relevant degrees of freedom of the QGP?
a Quasi-particles!?

O How does a strongly-coupled system arise from QFT?
a Compute bulk properties from first principles?

W. Ke
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Jets offer a compelling tool

O Jets can probe from the smallest medium scales to the largest medium scales

O Jet evolution can be computed from first principles
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Jet quenching in the quark-gluon plasma

We would like to learn big questions about the deconfined state of QCD

O What are the relevant degrees of freedom of the QGP?

a  Quasi-particles!?
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a Compute bulk properties from first principles?
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Jets offer a compelling tool

O Jets can probe from the smallest medium scales to the largest medium scales

O Jet evolution can be computed from first principles
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However, it is clear by now that this endeavor is not simple...
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Challenge #1

Jet evolution involves physics that is not known from first principles: initial state,

hydrodynamic evolution, medium response, hadronic rescattering, hadronization
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Challenge #1

Jet evolution involves physics that is not known from first principles: initial state,

hydrodynamic evolution, medium response, hadronic rescattering, hadronization

JETSCAPE, 2011.01430
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Global analysis is needed to fit models of the
physics that are not known from first-principles
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Challenge #2

Jet evolution itself is complicated, and there is no (known) golden observable

Simultaneous unknowns in jet quenching theory: Jet R, 5, for example, is strongly

O Strongly-coupled vs. weakly-coupled interaction modified — but models with different
0 Spacetime picture of parton shower physics predict similar values

0 Factorization breaking

0 Color coherence l

0
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Outline
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Bayesian parameter estimation

Results
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The jet transverse diffusion coefficient

As a parton propagates through the QGP, it will undergo momentum
exchanges transverse to its direction of propagation:

(ki) _ 1 J 24P (K1)
L

1 L e

where P (ki) is a scattering kernel.

The accumulated <ki> can arise from
various microscopic interactions:

a Single hard emission
a Multiple soft scattering
O Smooth drag
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The jet transverse diffusion coefficient

As a parton propagates through the QGP, it will undergo momentum
exchanges transverse to its direction of propagation:

(ki) _ 1 J 24P (K1)
L

LT a2
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where P (ki) is a scattering kernel.
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g is one of the most important
The accumulated <ki> can arise from quantities characterizing jet quenching

various microscopic interactions: 0 Out-of-cone transport — “energy loss

In BDMPS: AE ~ gL*
0 Single hard emission 0 Broadening

a Multiple soft scattering In BDMPS: Ay ~ + /21
O Smooth drag ) ¥ 1
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Leading hadrons

While g is important for all jet observables, it is not the only important physics

a Re-scattering of soft emissions

. - Relevant to reconstructed jets
O Medium response

For leading hadron p, however, g is the dominant physics

\
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We only need to know what is radiated away from the leading parton
— not what happens to those radiations
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Calculating g

Under certain assumptions, g can be calculated

For example, assuming perturbative, small-angle elastic scattering off a thermal medium:

420(3 2 |
HTL formula 7 (T, E) — CR Z:( )aSZ T3 In K Parton-medium
/ T 671'0[ST2 interaction scale
Local temperature Parton energy
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Calculating g

Under certain assumptions, g can be calculated

For example, assuming perturbative, small-angle elastic scattering off a thermal medium:

423 2
c( )a§T3 ln[ H

Parton-medium

HTL formula q(I,E) = CR interaction scale

N

Local temperature Parton energy

671'0(8 T2

However, we will instead parameterize g in |JETSCAPE with a more general form:

0(B.T) lap.co _ g <3 (M) {A[ln(f) ~n(B)] | Cn(f) 1n<D>]}
r T In (7)) n (§5)]°
g g
High-virtuality inspired HTL-inspired

I-independent elastic scattering off temperature T
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MAT TER

Majumder PRC 88 (2013)
Cao, Majumder PRC 101 (2020)

Medium-modified splitting function
Pu(2,Q%) = Py (2) + P (2,Q7)

Virtuality-ordered shower modified
to contain spacetime information

High-virtuality, radiation-dominated
regime: Q > \/gE

A. Majumder

low Q and low E
(near thermal)

high E

(near thermal)
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MAT TER W LBT

Majumder PRC 88 (201 3) Cao, Luo, Qin,Wang PRC 94 (2016)
Cao, Majumder PRC 101 (2020) PLB 777 (2018)
Medium-modified splitting function Elastic and inelastic scatterings — linearized
2 d 2 ‘
P, (2, Q%) = P¥*(2) + P™ed (5 (?) Boltzmann transport of jet partons

Virtuality-ordered shower modified
to contain spacetime information Inelastic scatterings generate gluon

L , o . radiation — higher twist formalism
High-virtuality, radiation-dominated

regime: Q > \/gE

Low-virtuality, scattering-dominated regime
A. Majumder

low Q and low E Broadening due to elastic scattering

(near thermal)

high E

low Q and low E )
(near thermal)
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Jet quenching in JETSCAPE

Medium-modified

Hard Parton shower Jot

scattering hadronization

Hadronic
cascade

\ Initial soft N Viscous Cooper-Frye
density Hydrodynamics hadronization
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This talk

AT

0={A.B,C.D)

Hard Medium-modified
ak : Parton shower: Jet
scattering:

PYTHIA = 0> 0, = 4 hadronization:
PYTHIA
Q < 0y

Viscous
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Vishnu 2+1D

Free
streaming
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JET Collaboration

Previous work: Separate fits of g at RHIC and e VAR McGill-AM ;
: 6 == HT-BW § === GLV-CUJETZ
LHC for various pQCD models : :
e HT-M 4
5 -
: ;
o 4 r 1 g -
t | |
<o-'g . k
Improvements in this talk: ‘ ,
O Extraction of g as a continuous function 2 r " -
of I, k£ | e 3 o1, 4 <AurAu at RHIC E
0 Bayesian statistics — correct approach AN e Po+Pb at LHG :
0 |Improved theoretical models L b
P 0 01 02 03 04 05

T (GeV)

JET Collaboration, PRC 90 (2014)
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PHENIX PRC 87 (2013)

Expe ri mental data CMS EPJC 72 (2012)

ATLAS JHEP 09 (2015)

Inclusive hadron R, 4

O Central + semi-central
—f
o One dataset per /sy = 0.2, 2.76, 5.02 TeV ) Vary T

O Truncate at p; > 8 GeV/c to avoid medium-modified hadronization effects

1_6 lllIlllIlllIlllIlllIl l_-IllllIllllIllllIllllIllllIllllIllllIlllI_-IllllIllllIllllIllllIllllIllllIllllIllllIlll-
14 - AuAu 200 GeV Design + PbPb 2.76 TeV Design + PbPb 5.02 TeV Design M -
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Experimental uncertainties

We decompose the experimental covariance matrix into several sources:

E f 1
b Zzncorr + chorr 4+ chorr

0 Uncorrelated uncertainties — e.g. statistical uncorr _ _uncorr uncorr s
0 Luminosity uncertainty — fully correlated across pr, centrality bins ’;’” ) kot f wag T
] . corr __ __fcorr _fcorr
a0 7, 4 uncertainty — fully correlated across pr bins Zkij = Ok Ok,
0 Other unspecified systematic uncertainties srlcorr _ _lcorr _leorr | PR —pry |
kij — Oki Ok4 ©XP 0
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Experimental uncertainties

We decompose the experimental covariance matrix into several sources:

E f 1
b Zzncorr + chorr 4+ chorr

0 Uncorrelated uncertainties — e.g. statistical uncorr _ _uncorr uncorr s
0 Luminosity uncertainty — fully correlated across pr, centrality bins ’;’” ) kot f wag T
] . corr __ __fcorr _fcorr
a0 7, 4 uncertainty — fully correlated across pr bins Zkij = Ok Ok,
0 Other unspecified systematic uncertainties srlcorr _ _lcorr _leorr | PR —pry |
kij — Oki Ok4 ©XP 0

There is a simple practice that we (experimentalists) need to start doing:

Report sighed systematic uncertainty breakdowns in HEPData

(or full covariances matrices)
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Bayesian parameter estimation

Goal: Use experimental data to constrain the value of g (E, T')

|. Parameterize g(E, T in a jet quenching model
4D o pep PRI g

2. Explore the parameter space @ to find the most likely values of 6 for that
model to explain the experimental data

We specifically want to constrain the probability distribution of ¢

—» Bayesian analysis

ames Mulligan, LBNL RHIP Seminar, University of Tennessee Feb 23,2021
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Bayesian parameter estimation

6={A,B,C.D)

P(O|D) ~ P(D|0)P©) D)

Y RN

Posterior Likelihood Prior

James Mulligan, LBNL ' NI e Feb 23,2021



Bayesian parameter estimation

P(O| D) ~ P(D|O)P(6) AED)

Y RN

Posterior Likelihood Prior

6={A,B,C.D)

The prior is our initial knowledge of the parameters — we will take a flat prior
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Bayesian parameter estimation

P(O| D) ~ P(D|O)P(6) | 4&D|

Y N

Posterior Likelihood Prior

6={A,B,C.D)

The prior is our initial knowledge of the parameters — we will take a flat prior

The likelihood characterizes how likely we would be to observe the given data,
given a set of parameters ¢

y)
P(D|0) ~ exp [— (AiZi;lAJ.) ] where A; = RgA,i — R
2. is the covariance matrix
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Bayesian parameter estimation

6={A,B,C.D)

P(O|D) ~ P(D|0)P(6) (4ED)

Y RN

Posterior Likelihood Prior

The prior is our initial knowledge of the parameters — we will take a flat prior

The likelihood characterizes how likely we would be to observe the given data,
given a set of parameters ¢

y)
P(D|0) ~ exp [— (AiZi;lAJ.) ] where A; = RgA,i — R
2. is the covariance matrix

The posterior is what we want — probability distribution of g, given the data
We will sample the posterior using Markov Chain Monte Carlo (MCMC)
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Gaussian Process Emulators

In order to evaluate the likelihood across the parameter space 6, we need to
know the R, , predicted by JETSCAPE at prohibitively many different ¢

Solution: Non-parametric interpolation

fn(gnew) ____________________________________________

This allows us to train an
interpolator using O (10 X dim 9)

JETSCAPE model calculations

with quantification of

interpolation uncertainty Giroor Mak
_ , imon /via
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Gaussian Process Emulators

In order to evaluate the likelihood across the parameter space 6, we need to
know the R, , predicted by JETSCAPE at prohibitively many different ¢

Solution: Non-parametric interpolation

1.0 | LBT //
® Au-—Au200GeV,40—-50% B
Pb — Pb 2.76 TeV, 30 — 40% 25
0.8 1 Pb — Pb 5.02 TeV, 30 — 50% 5
E
S
s 0.61 —
This allows us to train an S z
VL
. . . QC 0.4 o
interpolator using O (10 X dim 9) |
o<
JETSCAPE model calculations <
. L (0002 0-50%) 7 g,
with quantification of p (e o) -lo
] ] ] 00d 7 gfP~PD5.02TeV,30-50%) _ g 5o,
interpolation uncertainty . . . . . . I
0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.25 0.50
RAR®

ames Mulligan, LBNL RHIP Seminar, University of Tennessee Feb 23,2021
g Y



ReSUItS 2102.11337
LBT model
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Results 210211337
LBT model
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Results
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The extracted parameters are substantially
different for MATTER vs.LBT

MATTER: large A, small C
LBT:small A, large C

Consistent with the original motivation of the
g parameterization:

(BT Ar\ 2
q(E,T)|a,B,cD :420RC(3) ( ;) <

High-virtuality inspired
I-independent

HTL-inspired

elastic scattering off temperature T

Feb 23,2021



ReSUItS 2102.11337

From these extracted parameters, we plot the extracted ¢

Weak dependence on 1, p

JEVILAPE JEVILRAPE
10:I 1 1 rTrryrrrryrrr T T T T T T T T |: 10:| Fl NI L L L L I L L B O |:
— i o o o o o o e e e L ~ : T T T T [T T T T[T T TT[rrrT = _
9 — MATTER 90% CR = wATTERILET T I —MATTER90%CR  “5 warrerner | -
- 30 Prior 90% = - - 30f- Prior 90% ==
81 - LBT 90% CR T ooF E 81 - LBT 90% CR [ El=
£ -e- JET Collaboration @105_- = 7E T =
z o z o ;
. 65— . . . . _E . 6E 0 5op((132(3//c)150 200—E
= 5 = ~ 54 =
<O N - <O C N, -
4= - 45 S =
- — : 21 =
= p=100Geve 7 = 1 T = 300 MeV =
:' o e v e e P b ': :I ot b b b v s v b b L :
8.1 cz 03 04 05 06 0.7 038 OO 20 40 o0 80 100 120 140 160 180 200
T (GeV) p (GeV/c)

Consistent 7-dependence with JET Collaboration

Smaller median: elastic scattering, multiple gluon emission (Plotted g is for quarks)
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MUIti-Stage model 2102.11337

Theoretical arguments suggest that a multi-stage model is more well-founded:

MATTER — high-virtuality, Q > Q,
LBT — low-virtuality, Q < Q,

—® Include additional parameter, (J,, to the fit

L e e B B e I R I I IR I R LN AR LA RARRE LARAN LARRE LARAY RAALS RARY AARAS
. 4F AuAu 200 GeV Posterior t T PbPb2.76 TeV Posterior T PoPb 5.02 TeV Posteric M E No evidence that multi-
. Data from PHENIX T Data from ATLAS T Datafrom CMS el ]
1.2F = 0-10% Centrality —+ = 0-5% Centrality —+ = 0-10% Centrality AETILAFE Sta c mOdeI |m roves
BB 40-50% Centrality B8 30-40% Centrality BB 30-50% Centrality g P
1 - -Median A T =-=-Median T --Median — .
- ! ! - agreement with data

0 Caveat: py range not
restricted as in MATTER
only case

870 12 74 6 1810 20 80 40 5060 70 B0 10°20 80 40 50 60 70 80 90
p. (GeV/c) o (GeV/c) o (GeV/c)
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MUIti-Stage model 2102.11337

We also explored an alternate multi-stage parameterization, in which we replace
the “high-virtuality" term with E — QO

Q(Qa E7 T) ‘QO,A,C’,D L C(S) 4 y A {lﬂ (
E - ¥R (3)

=[O
N———
=
7 N\
>[&
N——
=
&
&
E/
{3
N
— =3I
N—""

Ji—)]

16— T T T T T T T T T T T T T T T T
. 4F AuAu 200 GeV Posterior } T PoPb2.76 TeV Posterior T PbPb 5.02 TeV Posteric M ] Improved fit
- Data from PHENIX T Datafrom ATLAS T Data from CMS Sl -
X , T , T | JETSCAFE °
1.2 ==0-10% Centrality —+ == 0-5% Centrality —+ == 0-10% Centrality —
- B 40-50% Centrality T [ 30-40% Centrality T [ 30-50% Centrality )
L Medar pf - Medan 4'::' "~ Medar E Will require additional
<0.8F I : T :
m n 4 1
ok b b b Dt x observables to make more
F , i A BEESS ; . .
0ab e E: : definitive statement about
EEEEE—— A T N S ] .
= = i
02TV A : multi-stage model
T T T T T T | N T TR TN FE AT AT TS T T i P FEET FN TN FE T ATl N Tl AT ATl I
08 10 12 14 16 18 10 20 30 40 50 e0 70 80 10 20 30 40 50 60 70 80 90

o (GeV/c) P, (GeV/c) o (GeV/c)
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MUIti-Stage model 2102.11337

Extracted g of MATTER+LBT is smaller than MATTER,LBT alone

Due to additional quenching at low virtuality (compared to MATTER) or high virtuality (compared to LBT alone)

(a) J/EMEﬁ“m
10—
95— MATTER 90% CR sE warrerasn -
8F ---LBT 90% CR T 10F R =
2E e MATTER+LBT1 90% CR 5_ : E
g . JcT Collaboratio o =
F o5 E
<O : ]
4 :
3 §
oF ;
£ p=100GeV/c -
0102 03 04 05 06 07 08

T (GeV)
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MUIti-Stage model 2102.11337

MATTER+LBTT -
M | l l | — RHIC+LHC | .
e | i i [we We also test the impact of
| i i t o RHI -
N b - | RHIC vs. LHC data
| Fit dominated by LHC data
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Summary

We extracted g(E, T) as a continuous function of E, T using Bayesian

parameter estimation with inclusive hadron R, , data

a Several |JETSCAPE models considered: MATTER, LBT, MATTER+LBT
0 Data significantly constrains prior distributions

9 No evidence for multi-stage model being preferred by data

N\
\~
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Global analysis is key to the future of the jet quenching physics program

0 Extension to additional observables — jet R, 5, substructure, correlations
O Need theory input: model parameterizations, multi-stage paradigm, improved modeling
of heavy-ion stages (hydro calibration, quenching in hadronic phase), ...

0 Need experiment input: reporting of uncertainty correlations on HEPData

0 Provide experimental guidance — observables, systems, centrality to best constrain models
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